深度学习基础理论篇(3)概率论

 一.频率与概率

随机事件: 可以在相同条件下重复执行,事先就能知道可能出现的结果,但不知道准确结果

样本空间:随机试验E的所有结果构成的集合,S={e}

频率:f_{n}\left ( A \right )=\frac{n_{A}}{n},  n_{A}表示A事件发生的次数,n表示总的试验次数

概率:f_{n}\left ( A \right ) 的稳定值P,P\left ( A \right )=P(n趋近于无穷大时,频率的值)

 二.古典概型

古典概型:试验E中的样本点是有限的,出现每一个样本点的概率是相同的(样本点理解为可能的结果)

P(A)=\frac{n\left ( A \right )}{S}  (A所包含的样本点数 / 总的样本点数)

三.条件概率

条件概率:P\left ( B\mid A \right )=\frac{n\left ( AB \right )}{n\left ( A \right )}=\frac{P\left ( AB \right )}{P\left ( A \right )},  表示在A条件确定发生的情况下,B事件发生的概率,即事件AB同时发生的概率

四.独立性

A_{1},A_{2},\cdots ,A_{n}为n个随机事件,若对2\leq k\leq n,均有:P\left (A _{i_{1}}A _{i_{2}}\cdots A _{i_{k}} \right )=\coprod_{j=1}^{k}P\left ( A_{i_{j}} \right )

则称A_{1},A_{2},\cdots ,A_{n}相互独立。

但是,两两独立不能得出相互独立。

独立试验

        重复独立试验:在相同条件下,将试验E重复进行,且每次试验是独立进行的,即每次试验各种结果出现的概率不受其他各次试验结果的影响

        n重伯努利试验:若一次实验的结果只有两个A和\bar{A},在相同条件下,将试验独立的重复进行n次,则称这n次试验所组成的试验为n重伯努利试验或伯努利概型。

 五.二维随机变量

1.二维随机变量

 

2.二维离散型随机变量 

 二维离散型随机变量:若二维随机变量(X, Y)全部可能取到的不同值是有限对或可列无限对。则称(X, Y)是离散型随机变量

 3.二维连续型随机变量

二维连续型随机变量:二维随机变量(X, Y)的分布函数F\left ( x, y \right ),如果存在非负函数f\left ( x, y \right ),对于任意的x,y有:F\left ( x, y \right )=\int_{-\infty }^{y}\int_{-\infty }^{x}f\left ( u,v \right )dudv,  称(X, Y)为连续型的二维随机变量,f\left ( x, y \right )为其概率密度

六.边缘分布

1.边缘分布函数

 

2.离散型的边缘概率密度 

 3.连续型的边缘概率密度 

例子: 

 

七.期望------------平均、大概思想的表达

1.离散型随机变量

离散型随机变量X的分布律为:P\left ( X=x_{k} \right )=P_{k},k=1, 2,\cdots, 若级数\sum_{k=1}^{\infty }x_{k}P_{k}绝对收敛,则称其为随机变量X的数学期望  E\left ( X \right )=\sum_{k=1}^{\infty }x_{k}P_{k}

2.连续型随机变量

连续性随机变量X的概率密度为f\left ( x \right ),若积分\int_{-\infty }^{+\infty }xf\left ( x \right )dx绝对收敛,则称积分的值\int_{-\infty }^{+\infty }xf\left ( x \right )dx为随机变量X的数学期望   E\left ( X \right )=\int_{-\infty }^{+\infty }xf\left ( x \right )dx

3.二维情况

 

4.期望性质 

 记录参考视频:【零基础也能学明白】最适合当代大学生学习的概率论课程_哔哩哔哩_bilibili

 八.贝叶斯定理、最大似然估计和后验概率估计

贝叶斯:根据已有的数据推测出概率。

P\left ( A\mid B \right )=\frac{P\left ( B\mid A \right )P\left ( A \right )}{P\left ( B \right )}

 

原文:​​​​​​通俗地理解贝叶斯公式(定理)_贝叶斯公式怎么理解_睿科知识云的博客-CSDN博客

原文:小白之通俗易懂的贝叶斯定理(Bayes‘ Theorem)_童小杨想学编程的博客-CSDN博客

最大似然估计:【数学基础】你还不理解最大似然估计吗?一篇文章带你快速了解掌握_生鱼同学的博客-CSDN博客

最大似然估计详解_很随便的wei的博客-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值