一.频率与概率
随机事件: 可以在相同条件下重复执行,事先就能知道可能出现的结果,但不知道准确结果
样本空间:随机试验E的所有结果构成的集合,S={e}
频率:, 表示A事件发生的次数,n表示总的试验次数
概率: 的稳定值P,(n趋近于无穷大时,频率的值)
二.古典概型
古典概型:试验E中的样本点是有限的,出现每一个样本点的概率是相同的(样本点理解为可能的结果)
P(A)= (A所包含的样本点数 / 总的样本点数)
三.条件概率
条件概率:, 表示在A条件确定发生的情况下,B事件发生的概率,即事件AB同时发生的概率
四.独立性
设为n个随机事件,若对,均有:
则称相互独立。
但是,两两独立不能得出相互独立。
独立试验
重复独立试验:在相同条件下,将试验E重复进行,且每次试验是独立进行的,即每次试验各种结果出现的概率不受其他各次试验结果的影响
n重伯努利试验:若一次实验的结果只有两个A和,在相同条件下,将试验独立的重复进行n次,则称这n次试验所组成的试验为n重伯努利试验或伯努利概型。
五.二维随机变量
1.二维随机变量
2.二维离散型随机变量
二维离散型随机变量:若二维随机变量(X, Y)全部可能取到的不同值是有限对或可列无限对。则称(X, Y)是离散型随机变量
3.二维连续型随机变量
二维连续型随机变量:二维随机变量(X, Y)的分布函数,如果存在非负函数,对于任意的x,y有:, 称(X, Y)为连续型的二维随机变量,为其概率密度
六.边缘分布
1.边缘分布函数
2.离散型的边缘概率密度
3.连续型的边缘概率密度
例子:
七.期望------------平均、大概思想的表达
1.离散型随机变量
离散型随机变量X的分布律为:, 若级数绝对收敛,则称其为随机变量X的数学期望
2.连续型随机变量
连续性随机变量X的概率密度为,若积分绝对收敛,则称积分的值为随机变量X的数学期望
3.二维情况
4.期望性质
记录参考视频:【零基础也能学明白】最适合当代大学生学习的概率论课程_哔哩哔哩_bilibili
八.贝叶斯定理、最大似然估计和后验概率估计
贝叶斯:根据已有的数据推测出概率。
原文:通俗地理解贝叶斯公式(定理)_贝叶斯公式怎么理解_睿科知识云的博客-CSDN博客
原文:小白之通俗易懂的贝叶斯定理(Bayes‘ Theorem)_童小杨想学编程的博客-CSDN博客