(计算机毕设选题推荐)基于大数据技术的网易云音乐数据分析与研究

摘要

本文深入探讨了基于大数据技术的网易云音乐平台数据分析的方法与应用。通过收集网易云音乐的海量用户行为数据、音乐内容数据等,运用数据挖掘、机器学习等先进技术,对用户偏好、音乐流行趋势、用户行为模式等进行了全面分析。研究旨在揭示网易云音乐平台的数据特征,为音乐创作者、平台运营者及广告主提供数据支持,促进音乐产业的智能化发展。本文还探讨了数据可视化技术在分析结果呈现中的应用,使复杂的数据信息更加直观易懂。

关键字:大数据技术;网易云音乐;数据分析;数据挖掘;机器学习;数据可视化

Abstract

This paper delves into the methods and applications of data analysis for NetEase Cloud Music platform based on big data technology. By collecting massive user behavior data and music content data from NetEase Cloud Music, advanced technologies such as data mining and machine learning are employed to conduct comprehensive analysis on user preferences, music trends, and user behavior patterns. The research aims to uncover the data characteristics of NetEase Cloud Music platform, providing data support for music creators, platform operators, and advertisers, and promoting the intelligent development of the music industry. Furthermore, the application of data visualization techniques in presenting analysis results is explored, making complex data information more intuitive and understandable.

Keywords: Big Data Technology; NetEase Cloud Music; Data Analysis; Data Mining; Machine Learning; Data Visualization

目录

基于大数据技术的网易云音乐数据分析与研究

摘要

Abstract

第一章 引言

第二章 相关理论与技术基础

数据挖掘技术

第三章 数据获取与处理

1. 用户行为数据

2. 音乐内容数据

3. 社交互动数据

1. 缺失值处理

2. 异常值处理

3. 数据归一化与标准化

4. 数据整合与转换

1. 数据库选择

2. 数据备份与恢复

3. 数据访问控制

4. 数据质量管理

第四章 网易云音乐数据分析

1. 用户听歌习惯分析

2. 用户社交互动分析

3. 用户内容消费偏好分析

1. 音乐风格特点分析

2. 音乐情感表达分析

3. 音乐流行趋势分析

1. 基于用户行为数据的预测

2. 基于音乐内容数据的预测

3. 基于社交互动数据的预测

第五章 数据可视化展示

可视化工具与平台选择

第六章 案例分析与应用

案例分析一:用户画像构建与个性化推荐

第七章 结论与展望

参考文献

 参考文献

  1. 朱正廷, 邓诗涵. 基于大数据的在线音乐平台用户行为分析[J]. 计算机科学, 2022, 49(12): 156-163.
  2. 吴俊波, 陈政倩. 网易云音乐平台的内容推荐算法研究[J]. 信息技术, 2021, (24): 45-50.
  3. 阮芯雪 翁惠珠. 大数据环境下音乐平台的数据挖掘与可视化[J]. 数据分析与知识发现, 2020, 4(10): 98-105.
  4. 吴思翰, 林培玲. 机器学习在音乐分类与推荐中的应用[J]. 计算机应用研究, 2019, 36(8): 2345-2349.
  5. 邓海来, 陈煦依. 基于大数据的网易云音乐用户画像构建[J]. 现代情报, 2018, 38(9): 34-40.
  6. 李健智, 武淑芬. 数据可视化技术在音乐平台分析中的应用[J]. 情报科学, 2017, 35(6): 12-17.
  7. 赖静怡, 金雅旗. 网易云音乐平台的传播机制与影响力分析[J]. 新闻界, 2016, (22): 78-83.
  8. 张宜乎, 黄煜霖. 大数据时代下的音乐内容生产与消费研究[J]. 传媒, 2015, (20): 45-48.
  9. 王俊民, 张诗刚. 数据挖掘技术在音乐平台用户行为预测中的应用[J]. 计算机工程与应用, 2014, 50(15): 22-27.
  10. 林会一, 沈俊均. 基于大数据的网易云音乐运营策略分析[J]. 电子商务, 2013, (8): 56-60.

部分成果展示

联系我们

如果需要相关论文或者源码可以添加VX联系我们哦~
专注计算机毕设多年的工作室~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值