(计算机毕设选题推荐)基于大数据技术的淘宝用户行为数据分析与研究

摘要

本文旨在通过大数据技术,对淘宝平台上的用户行为数据进行深入的分析与研究。首先,论文概述了大数据技术在电子商务领域的应用背景与重要性,并明确了研究淘宝用户行为数据的意义。随后,详细介绍了数据采集、预处理、存储与分析的整个过程,包括采用的技术框架、算法模型及其实施细节。在数据分析部分,论文从用户浏览、购买、评价等多个维度出发,揭示了用户行为的特征、趋势及潜在规律,如用户偏好、购买周期、商品热度等。此外,还通过聚类分析、关联规则挖掘等方法,识别出高价值用户群体和潜在购买意向,为淘宝平台的精准营销、个性化推荐等提供了有力支持。最后,论文总结了研究成果,并提出了进一步优化用户行为数据分析的策略与建议。

关键字:大数据技术,淘宝用户行为,数据分析,精准营销,个性化推荐

Abstract

This paper aims to conduct an in-depth analysis and research on user behavior data on Taobao platform through big data technology. Firstly, the paper outlines the application background and significance of big data technology in the field of e-commerce, and clarifies the importance of studying user behavior data on Taobao. Subsequently, the entire process of data collection, preprocessing, storage, and analysis is introduced in detail, including the technical framework, algorithm models, and implementation details adopted. In the data analysis section, the paper reveals the characteristics, trends, and potential laws of user behavior from multiple dimensions such as browsing, purchasing, and evaluation, including user preferences, purchase cycles, and product popularity. Furthermore, through clustering analysis, association rule mining, and other methods, high-value user groups and potential purchase intentions are identified, providing strong support for precise marketing and personalized recommendations on Taobao platform. Finally, the paper summarizes the research results and proposes strategies and suggestions for further optimizing user behavior data analysis.

Keywords: big data technology, Taobao user behavior, data analysis, precise marketing, personalized recommendation

目录

基于大数据技术的淘宝用户行为数据分析与研究

摘要

Abstract

第一章 绪论

1.1 研究背景

1.2 研究目的与意义

1.3 国内外研究现状

1.4 论文主要内容与结构安排

第二章 大数据技术在淘宝用户行为数据分析中的应用概述

2.1 大数据技术简介

2.2 数据采集技术

2.3 数据存储技术

2.4 数据分析技术

第三章 基于大数据技术的淘宝用户行为数据采集与存储

3.1 数据来源

3.2 数据采集方法

3.3 数据存储方案设计

第四章 基于大数据技术的淘宝用户行为数据分析方法

4.1 数据预处理

4.2 用户画像构建方法

4.3 关联分析方法

第五章 基于大数据技术的淘宝用户行为数据分析结果呈现与讨论

5.1 用户画像结果展示

5.2 关联分析结果

5.3 个性化推荐效果评估

第六章 基于大数据技术的淘宝用户行为数据分析对淘宝平台和商家的影响与应用

6.1 对淘宝平台个性化推荐的影响与应用

6.2 对淘宝商家营销的影响与应用

6.3 对电商行业发展的影响与应用

第七章 结论与展望

7.1 研究工作总结

7.2 研究不足与改进方向

7.3 未来展望

参考文献

八、参考文献

4. 参考文献(10篇中文论文示例)

  1. 陈季苹, 陈佳霖. 基于大数据的电子商务用户行为分析[J]. 电子商务, 2020, (12): 45-52.
  2. 赖和慈, 李怡伶. 淘宝平台用户购买行为预测模型研究[J]. 计算机科学, 2021, 48(S2): 123-128.
  3. 林育来, 陈晓. 大数据技术在电商个性化推荐系统中的应用[J]. 数据分析与知识发现, 2020, 4(10): 1-10.
  4. 李宛仪,高启淑. 基于用户行为数据的电商网站优化策略[J]. 信息系统学报, 2021, (2): 11-20.
  5. 吴碧沛, 蔡宗奇. 淘宝用户评价行为对购买决策的影响分析[J]. 商业经济研究, 2022, (5): 78-83.
  6. 刘惠雯, 欧郁雯. 大数据环境下电商用户画像构建技术[J]. 计算机应用研究, 2021, 38(10): 2987-2991.
  7. 陈孟伟, 黄良财. 基于聚类分析的电商用户细分研究[J]. 现代情报, 2020, 40(11): 134-141.
  8. 张介玟,诸智湖. 关联规则挖掘在电商商品推荐中的应用[J]. 计算机工程与应用, 2021, 57(12): 1-8.
  9. 陈雅惠, 林华昀. 电商大数据平台架构设计与实践[J]. 计算机技术与发展, 2020, 30(10): 1-6.
  10. 刘慧惟, 赖碧仲. 淘宝平台用户行为数据可视化研究[J]. 数据可视化技术, 2021, (3): 23-30. 

部分成果展示

联系我们

如果需要相关论文或者源码可以添加VX联系我们哦~
专注计算机毕设多年的工作室~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值