InternLM(书生·浦语)大模型部署

趣味 Demo 任务列表

本节课可以可以实践 4 个主要内容,分别是:

  • 部署 InternLM2-Chat-1.8B 模型进行智能对话
  • 部署实战营优秀作品 八戒-Chat-1.8B 模型
  • 通过 InternLM2-Chat-7B 运行 Lagent 智能体 Demo
  • 实践部署 浦语·灵笔2 模型

部署 InternLM2-Chat-1.8B 模型进行智能对话

2.2 下载 InternLM2-Chat-1.8B 模型

2.3 运行 cli_demo

双击打开 /root/demo/cli_demo.py 文件,复制以下代码:

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM


model_name_or_path = "/root/models/Shanghai_AI_Laboratory/internlm2-chat-1_8b"

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True, device_map='cuda:0')
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='cuda:0')
model = model.eval()

system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""

messages = [(system_prompt, '')]

print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")

while True:
    input_text = input("\nUser  >>> ")
    input_text = input_text.replace(' ', '')
    if input_text == "exit":
        break

    length = 0
    for response, _ in model.stream_chat(tokenizer, input_text, messages):
        if response is not None:
            print(response[length:], flush=True, end="")
            length = len(response)

输入命令,执行 Demo 程序:

conda activate demo 
python /root/demo/cli_demo.py

等待模型加载完成,这个过程比较慢,需要耐心,键入内容示例:

请创作一个 300 字的小故事

效果如下:

实战:部署实战营优秀作品 八戒-Chat-1.8B 模型

3.1 简单介绍 八戒-Chat-1.8BChat-嬛嬛-1.8BMini-Horo-巧耳(实战营优秀作品)

八戒-Chat-1.8BChat-嬛嬛-1.8BMini-Horo-巧耳 均是在第一期实战营中运用 InternLM2-Chat-1.8B 模型进行微调训练的优秀成果。其中,八戒-Chat-1.8B 是利用《西游记》剧本中所有关于猪八戒的台词和语句以及 LLM API 生成的相关数据结果,进行全量微调得到的猪八戒聊天模型。作为 Roleplay-with-XiYou 子项目之一,八戒-Chat-1.8B 能够以较低的训练成本达到不错的角色模仿能力,同时低部署条件能够为后续工作降低算力门槛。

3.2 配置基础环境

3.3 下载运行 Chat-八戒 Demo

在 Web IDE 中执行 bajie_download.py

python /root/Tutorial/helloworld/bajie_download.py 

待程序下载完成后,输入运行命令:

streamlit run /root/Tutorial/helloworld/bajie_chat.py --server.address 127.0.0.1 --server.port 7860 

 打开 PowerShell 后,执行端口映射,先查询端口,再根据端口键入命令

模型加载成功后就可以和猪八戒聊天了


 

实战:使用 Lagent 运行 InternLM2-Chat-7B 模型

4.1 初步介绍 Lagent 相关知识

Lagent 是一个轻量级、开源的基于大语言模型的智能体(agent)框架,支持用户快速地将一个大语言模型转变为多种类型的智能体,并提供了一些典型工具为大语言模型赋能。它的整个框架图如下:

Lagent 的特性总结如下:

  • 流式输出:提供 stream_chat 接口作流式输出,本地就能演示酷炫的流式 Demo。
  • 接口统一,设计全面升级,提升拓展性,包括:
    • Model : 不论是 OpenAI API, Transformers 还是推理加速框架 LMDeploy 一网打尽,模型切换可以游刃有余;
    • Action: 简单的继承和装饰,即可打造自己个人的工具集,不论 InternLM 还是 GPT 均可适配;
    • Agent:与 Model 的输入接口保持一致,模型到智能体的蜕变只需一步,便捷各种 agent 的探索实现;
  • 文档全面升级,API 文档全覆盖。

打开文件子路径

d /root/demo 

使用 git 命令下载 Lagent 相关的代码库:

git clone https://github.com/internlm/lagent.git 
cd /root/demo/lagent 
git checkout 581d9fb8987a5d9b72bb9ebd37a95efd47d479ac 
pip install -e . # 源码安装

4.3 使用 Lagent 运行 InternLM2-Chat-7B 模型为内核的智能体

Intern Studio 在 share 文件中预留了实践章节所需要的所有基础模型,包括 InternLM2-Chat-7b 、InternLM2-Chat-1.8b 等等。我们可以在后期任务中使用 share 文档中包含的资源,但是在本章节,为了能让大家了解各类平台使用方法,还是推荐同学们按照提示步骤进行实验。

打开 lagent 路径:

cd /root/demo/lagent 

在 terminal 中输入指令,构造软链接快捷访问方式:

ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b /root/models/internlm2-chat-7b 

打开 lagent 路径下 examples/internlm2_agent_web_demo_hf.py 文件,并修改对应位置 (71行左右) 代码:

value='/root/models/internlm2-chat-7b'

输入运行命令 - 点开 7860 链接后,大约需要 5 分钟完成模型加载:

streamlit run /root/demo/lagent/examples/internlm2_agent_web_demo_hf.py --server.address 127.0.0.1 --server.port 7860

打开 http://127.0.0.1:7860 后,(会有较长的加载时间)勾上数据分析,其他的选项不要选择,进行计算方面的 Demo 对话,即完成本章节实战。键入内容示例:

请解方程 x^2+2x+1=0 之中 x 的结果

求解结果如下:

实战:实践部署 浦语·灵笔2 模型

5.1 初步介绍 XComposer2 相关知识

浦语·灵笔2 是基于 书生·浦语2 大语言模型研发的突破性的图文多模态大模型,具有非凡的图文写作和图像理解能力,在多种应用场景表现出色,总结起来其具有:

  • 自由指令输入的图文写作能力: 浦语·灵笔2 可以理解自由形式的图文指令输入,包括大纲、文章细节要求、参考图片等,为用户打造图文并貌的专属文章。生成的文章文采斐然,图文相得益彰,提供沉浸式的阅读体验。
  • 准确的图文问题解答能力:浦语·灵笔2 具有海量图文知识,可以准确的回复各种图文问答难题,在识别、感知、细节描述、视觉推理等能力上表现惊人。
  • 杰出的综合能力: 浦语·灵笔2-7B 基于 书生·浦语2-7B 模型,在13项多模态评测中大幅领先同量级多模态模型,在其中6项评测中超过 GPT-4V 和 Gemini Pro

5.2 配置基础环境

进入开发机,启动 conda 环境:

conda activate demo # 补充环境包 
pip install timm==0.4.12 sentencepiece==0.1.99 markdown2==2.4.10 xlsxwriter==3.1.2 gradio==4.13.0 modelscope==1.9.5 

下载 InternLM-XComposer 仓库 相关的代码资源:

cd /root/demo 
git clone https://gitee.com/internlm/InternLM-XComposer.git 
# git clone https://github.com/internlm/InternLM-XComposer.git 
cd /root/demo/InternLM-XComposer 
git checkout f31220eddca2cf6246ee2ddf8e375a40457ff626 

在 terminal 中输入指令,构造软链接快捷访问方式:

ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm-xcomposer2-7b /root/models/internlm-xcomposer2-7b 
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm-xcomposer2-vl-7b /root/models/internlm-xcomposer2-vl-7b

5.3 图文写作实战

继续输入指令,用于启动 InternLM-XComposer

cd /root/demo/InternLM-XComposer 
python /root/demo/InternLM-XComposer/examples/gradio_demo_composition.py \ 
--code_path /root/models/internlm-xcomposer2-7b \ 
--private \ 
--num_gpus 1 \ 
--port 7860

浏览器打开http://127.0.0.1:7860,输入文章主题和提示,进行图文写作

Hugging Face模型下载

6.1安装Hugging Face依赖

pip install -U huggingface_hub

6.2使用huggingface_cli下载模型

由于本人安装huggingface_hub库之后无法直接运行huggingface_cli,故找到了其所在的python文件,从而运行,运行结果如下:

6.3使用hf_hub_download从HuggingFace下载模型

只需一行代码,即可从HuggingFace下载模型,非常方便,还可以指定下载某一个文件以及本地目录。新建 python 文件,填入以下代码,运行即可。

import os 
from huggingface_hub import hf_hub_download  # Load model directly 

hf_hub_download(repo_id="internlm/internlm2-7b", filename="config.json",local_dir="D:\data\hgmodel\model")

运行结果如下:

参考文献:

https://github.com/InternLM/InternLM/

https://github.com/InternLM/Tutorial/tree/camp2

致谢:

感谢上海人工智能实验室开发的书生·浦语大模型全链路开源体系,提供了一个门槛极低,工具链齐全的大模型平台。开源了多模态任务数据集,涵盖预训练,微调,部署,评测和Agent应用等大模型全链路支持,是一个极容易上手的开源通用大模型基座。感谢课程开发团队,提供了一个非常好的课程和算力平台,促进国产大模型的生态的繁荣以及推广和应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值