文章目录
1、如果环R带乘法单位元1,对任意a∈R,请证明:-a=(-1)a
证明:
∵R是环
∴-1a=(-1)a
又∵1是乘法单位元
∴1a=a1=a
∴-1a=-a
得证:-a=(-1)a
2、如果任取环R中元素x都满足x2=x,请证明环R是交换环
证明:
任取a,b∈R,因为封闭性,a+b∈R
(a+b)2=(a+b)*(a+b)=a2+ab+ba+b2
因为x2=x
所以(a+b)2=a+b
a2=a,b2=b
∴ab+ba=0
ab=-ba
-ba∈R
∴-ba=(-ba)2=(ba)2=ba
ab=ba,得证
3、请解释为什么Zn在加法上的子群都是Zn的子环
Zn={0,1,2…n-1}
假设Zn’为Zn在加法上的子群,易得Zn’有加法单位元和逆元,且加法满足封闭性
取∀a,b∈∈Zn’,ab=a+a+…+a(b个a相加)∈Zn’
乘法也满足封闭性
易得乘法在加法上有分配律
得证
4、证明环2Z不与环3Z同构
证明:
反证法
假设环2Z与环3Z同构
∴存在映射φ:2Z->3Z
满足:
φ(a+b)=φ(a)+φ(b)
φ(ab)=φ(a)φ(b)
带入a=b=0,φ(0)=0
当存在a+b=ab时,例如a=b=2
φ(2)+φ(2)=φ(2)*φ(2)
φ(2)=0或2
不满足双射,得证
总结
有错误待指正