CINTA第八次作业:Ring and Field

1.如果环R带乘法单位元1,对任意a∈R,请证明-a=(-1)a。

证明:因为环R带乘法单位元1,则对任意a∈R,有a1=1a=a,进而有-a=-1a

           又因为在任意环中,0a=0,所以-a=-1a=-1a+0a

           又由分配律得,-1a+0a=(-1+0)a=(-1)a

           综上,-a=(-1)a

2.如果任取环R中的元素x^{}都满足x^{2}=x^{},请证明环R是交换环。

证明:要证明环R是交换环,即证任意a,b∈R,均由ab=ba

           任取a,b∈R,由题意得(a+b)^{2}=a^{2}+b^{2}+ab+ba=a+b^{}

           又因为a^{2}=a, b^{2}=b,所以ab=-ba

           只需再证-ba=ba

           因为(-ba)^{2}=(-ba)(-ba)=(ba)^{2},且(-ba)^{2}=-ba,(ba)^{2}=ba

           所以-ba=ba

           所以ab=-ba=ba

           综上,R是交换环。

3.请解释为什么Zn在加法上的子群都是Zn的子环。

解释:

         易知Zn是一个交换环

         首先,任取群Zn的一个子群,设为G

         因为G是一个群,则G必有单位元,则G≠∅

         任取a,b∈G,根据群的封闭性知ab∈G

         -b为b在加法操作上的逆元,根据群的性质,-b也在群G中,则由群的封闭性知a(-b)∈G

         即a-b属于G

         综上,G为R的子环,所以Zn在加法上的子群都是Zn的子环。

14.证明环2Z不与环3Z同构。

证明:

        假设环2Z与环3Z同构,不妨设\Phi2Z\rightarrow 3Z

        任取a,b∈2Z,则有\Phi (ab)=\Phi (a)\cdot \Phi (b),\Phi (a+b)=\Phi (a)+\Phi (b)

        令a=b=2,则ab=a+b=4,有\Phi (2)\cdot \Phi (2)=\Phi (2)+\Phi (2)

        即\Phi (2)\cdot (\Phi(2)-2)=0,所以\Phi(2)=2\Phi(2)=0

        因为2∉3Z,所以若\Phi(2)=2,则2不能映射到3Z上,与假设矛盾

        而2Z3Z的加法单位元均为0,KerΦ=0,即\Phi(2)\neq 0

        假设错误,2Z不与3Z同构。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值