一、研究背景介绍
近年来,数据库驱动的高通量筛选方法在热电材料的研究中展现出了重要的价值。然而,这一领域的一个主要挑战在于如何实现高效且准确的计算。传统的计算方法,如基于密度泛函理论(DFT)的第一性原理计算,虽然在精度方面表现优异,但由于计算成本高,难以满足大规模筛选的需求。
二、机器学习材料筛选发展
为克服这些挑战,研究人员开发了多种基于机器学习的方法: 高斯逼近势(GAP)和神经网络势(NNP) 及其在预测材料的热力学和动力学特性上的应用 标准化数据库Materials Project Open Quantum Materials Database数据集
但存在数据库的规模和多样性不足,在半赫斯勒合金的热电性能研究中,仍然存在局限性
三、研究目的
本研究的主要目的是构建并利用HH130数据库,以提高机器学习模型在原子间势的建模精度,并应用于预测半赫斯勒热电材料的热输运特性,旨在通过机器学习模型提高计算效率,并帮助研究人员探索材料设计的新策略,从而推动高性能热电材料的开发。
1.解决现有计算方法的局限性
密度泛函理论计算虽然准确,但其在大规模材料系统和高温动力学过程中的应用存在计算成本高、效率低的问题,面临显著的计算瓶颈,本研究希望通过训练机器学习势能模型,以更快的速度完成对材料热力学和力学性质的预测,实现大规模材料筛选和模拟。
2.建立标准化的MLIPs数据库
为了更广泛地应用机器学习技术,研究计划建立一个名为HH130的标准化数据库,提供多种不同的半赫斯勒化合物在多种热力学条件下的机器学习原子间势模型,让研究人员能快速获得高精度的MLIP模型及其预测的数据,为后续的材料开发提供基础支撑。
3.支持新型低热导率材料筛选
通过HH130数据库帮助识别潜在的新型热电材料,研究展示数据库如何在短时间内进行高效筛选,确定可能的低热导率半赫斯勒化合物,例如,研究通过MLIP模型筛选出多种因四声子相互作用而降低晶格热导率的材料,从而为未来的材料设计和优化提供实用工具。
四、数据集介绍
HH130 数据集包含了 130 种 HH 化合物的机器学习原子间势 (MLIP) 模型和 31,891 个构型数据(平均每个 HH 材料有约 245 个构型),以及 390 个 MLIP 模型(每种 HH 材料有三个不同的模型)。
(1)双自适应采样(DAS)
从头计算 (AIMD) 模拟、 机器学习势 (MLIP) 模型 、自动迭代训练——过精细的局部采样和广泛的全局采样,确保数据的多样性
(2)分层自适应采样(HAS)
内环采样:较小的热力学条件范围 、外环采样:更广泛的热力学条件——从宏观到微观逐步逼近最优模型
五、模型介绍
1.数据收集
使用密度泛函理论(DFT)计算材料的电子结构和性质,作为验证基础。
2.模型训练
通过HH130数据集训练机器学习势(MLIPs)模型,并与DFT计算结果进行比较,验证模型的准确性。
3.模型应用
经过验证的模型可用于预测新材料的热导率、热膨胀系数等性能,帮助材料设计和优化。
通过训练,MLIP模型学习到不同原子之间的相互作用模式,并建立一个通用的原子间势模型,该模型能够预测材料在不同条件下的性质。
模型输入:
- 原子配置(Atomic Configuration):输入包括每个化合物中原子的种类、位置(坐标)和邻域结构
- 晶格常数(Lattice Constants):晶格常数是描述晶体结构的基本参数,决定原子之间的间距,影响热导率等热输运性质
- 原子间力常数(IFC):原子间力常数是描述原子之间相互作用的物理量,通常与热导率密切相关
- 热力学条件:包括压力、温度等环境条件,这些条件对热导率有重要影响
模型输出:
- 晶格热导率(kLk_LkL):这是该研究的主要输出,表示材料晶格部分对热量传导的能力。
- 能量和力(Energy and Force):在高通量筛选中,这些值用来评估材料的热力学稳定性。
- 二阶原子间力常数(Second-order Interatomic Force Constants):该参数有助于描述晶格振动的特性,并且对预测材料的热导率非常重要。
- 热扩散率(Thermal Diffusivity):重要的热输运性质,与热导率密切相关,是模型的辅助输出。
六、结果分析
样本信息: 130种半赫斯勒材料 MLIP模型细节:使用MTP作为描述符 MatHub-3d的开放访问文件
※ 通过130个HH化合物的DFT和MLIP声子色散的均方根误差对比,大多数数据点的RMSE在0 - 0.1 THz区间内
※ 以TiCoSb为例,dft预测力与mlip预测力之间高度一致,绝对误差分布集中在0附近
以上结果表明,机器学习势能够高效地预测材料的力学和热学性质,具有较高的准确性和可靠性
八、创新点介绍
1.创新点一:融合机器学习与材料科学
首次将机器学习势能模型(MLIPs)系统性地应用于半赫斯勒热电材料的热传导特性研究,开创性地展示了机器学习技术在材料性能预测中的潜力。这种融合方法不仅提高了预测效率,还降低了传统密度泛函理论(DFT)计算的成本。
2.创新点二:高精度势能模型构建
本研究利用丰富的HH130数据集,训练并优化了精度与DFT相当的机器学习势能模型。通过创新性的方法拟合势能面,使模型在捕捉复杂的原子间相互作用方面表现出色,显著提升了材料热力学和力学性质预测的准确性。
3.创新点三:广泛的适用性与验证
模型的性能不同温度和材料结构下经过系统验证,展现了其在预测热电材料特性上的广泛适用性与鲁棒性,这种多场景验证提供了机器学习模型在材料科学领域广泛应用的有力证据。
九、总结与展望
总结:
- 本研究通过构建基于机器学习的势能模型(MLIPs)来预测半赫斯勒热电材料的热传导特性。
- 研究结合了密度泛函理论(DFT)计算结果和实际应用,展示了机器学习在材料科学领域中的潜力。
- 使用HH130数据集成功训练了机器学习势,并验证了其在材料性质预测中的准确性,特别是在力学和热学性质的计算方面。
- 实验结果表明,机器学习势模型能够高效、精确地预测热电材料的体积能量特性(VEC)。
下一步计划:
- 模型泛化与扩展:将现有的机器学习模型扩展到更广泛的材料体系中,尤其是对于不同元素组成、不同结构类型的热电材料,进一步验证机器学习势的适用性和鲁棒性。
- 结合其他计算方法:将机器学习与其他先进的计算方法(如分子动力学模拟、蒙特卡洛模拟等)结合,以进一步提高材料性质预测的精度和可靠性。
- 高维数据分析:未来可以利用高维数据分析技术,如深度学习等,提升机器学习势模型的精度,尤其是在处理复杂非线性关系时,为热电材料设计提供更多理论支持。
以上学习论文研究内容来自:
HH130: a standardized database of machine learning interatomic potentials, datasets, and its applications in the thermal transport of half Heusler thermoelectrics