习题 整数拆分

Leetcode 343 

给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k >= 2 ),并使这些整数的乘积最大化。

返回 你可以获得的最大乘积 。

分析:

对于动态规划,可以通过动规五部曲来分析。

1.确定dp数组以及下标含义

dp[i]含义是拆分数字i,可以得到的最大乘积为dp[i],这个很关键

2.确定递推公式

得到乘积可以从1遍历到j,有两种渠道得到dp[i],一个是把i分为j和i-j,j*(i-j);

另一个是j*dp[i-j],相当于拆分(i-j),这里的思想主要就是拆分,将所有的情况都拆分出来。

公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));

这里max的原因是可能第一种情况比第二种拆开的情况得到的结果还大,所以要进行比较,并不是拆分就要比不细致拆分数值大。

3.dp初始化

dp[0]和dp[1]初始化没有意义,而dp[2]初始化为1,也就是拆分为1*1。

4.确定遍历顺序

根据递归公式dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j))

很明显是从前向后遍历,先有dp[i-j]再有dp[i]。

5.打印dp数组\举例推导

举个例子带入公式进行推导,如果得到的结果与预期不符合与可清晰看出

代码:

class Solution {
public:
    int integerBreak(int n) {
        vector<int> dp(n + 1);
        dp[2] = 1;
        for (int i = 3; i <= n ; i++) {
            for (int j = 1; j <= i / 2; j++) {
                dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
            }
        }
        return dp[n];
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值