复变函数之傅里叶变换

复变函数 | 傅里叶变换

傅里叶变换

F \cal{F} F用来表示傅里叶变换。

1. 傅里叶级数

f T ( t ) = a 0 2 + ∑ n = 1 ∞ a n cos ⁡ n ω 0 t + b n sin ⁡ ω 0 t f_T(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n \omega_0t +b_n \sin\omega_0t fT(t)=2a0+n=1ancosnω0t+bnsinω0t

三角函数做基底:
1 l ∫ − l l cos ⁡ k π x l cos ⁡ n π x l d x = δ k n 1 2 l ∫ − l l 1 d x = 1 1 l ∫ − l l sin ⁡ k π x l sin ⁡ n π x l d x = δ k n 1 l ∫ − l l sin ⁡ k π x l cos ⁡ n π x l d x = δ k n 1 2 l ∫ − l l cos ⁡ k π x l d x = 0 1 2 l ∫ − l l sin ⁡ k π x l d x = 0 \frac{1}{l}\int_{-l}^l{\cos \frac{k\pi x}{l}\cos \frac{n\pi x}{l}dx=\delta _{kn}} \\ \frac{1}{2l}\int_{-l}^l{1dx=1} \\ \frac{1}{l}\int_{-l}^l{\sin \frac{k\pi x}{l}\sin \frac{n\pi x}{l}dx=\delta _{kn}} \\ \frac{1}{l}\int_{-l}^l{\sin \frac{k\pi x}{l}\cos \frac{n\pi x}{l}dx=\delta _{kn}} \\ \frac{1}{2l}\int_{-l}^l{\cos \frac{k\pi x}{l}dx=0} \\ \frac{1}{2l}\int_{-l}^l{\sin \frac{k\pi x}{l}dx=0} \\ l1llcoslxcoslxdx=δkn2l1ll1dx=1l1llsinlxsinlxdx=δknl1llsinlxcoslxdx=δkn2l1llcoslxdx=02l1llsinlxdx=0
其中
ω 0 = 2 π T , a n = 2 T ∫ − T 2 T 2 f T ( t ) cos ⁡ n ω 0 t   d t , ( n = 0 , 1 , 2 ⋯   ) , b n = 2 T ∫ − T 2 T 2 f T ( t ) sin ⁡ n ω 0 t   d t , ( n = 1 , 2 , ⋯   ) \omega_0 = \frac{2\pi}{T},a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}}f_T(t) \cos n\omega_0 t \ dt,(n = 0 ,1,2\cdots),b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}}f_T(t) \sin n\omega_0 t \ dt,(n=1,2,\cdots) ω0=T2π,an=T22T2TfT(t)cosnω0t dt(n=0,1,2),bn=T22T2TfT(t)sinnω0t dt(n=1,2,)
奇延拓:
F ( x ) = { f ( x ) , x ∈ ( 0 , l ) − f ( − x ) , x ∈ ( l , 0 ) F ( x ) = ∑ k = 1 ∞ b k sin ⁡ k π x l b k = 1 l ∫ − l l F ( x ) sin ⁡ k π x l d x = 2 l ∫ 0 l f ( x ) sin ⁡ k π x l d x F\left( x \right) =\left\{ \begin{array}{c} f\left( x \right) ,x\in \left( 0,l \right)\\ -f\left( -x \right) ,x\in \left( l,0 \right)\\ \end{array} \right. \\ F\left( x \right) =\sum_{k=1}^{\infty}{b_k\sin \frac{k\pi x}{l}} \\ b_k=\frac{1}{l}\int_{-l}^l{F\left( x \right) \sin \frac{k\pi x}{l}dx} \\ =\frac{2}{l}\int_0^l{f\left( x \right) \sin \frac{k\pi x}{l}dx} \\ F(x)={f(x),x(0,l)f(x),x(l,0)F(x)=k=1bksinlxbk=l1llF(x)sinlxdx=l20lf(x)sinlxdx
偶延拓:
F ( x ) = { f ( x ) , x ∈ ( 0 , l ) f ( − x ) , x ∈ ( − l , 0 ) F ( x ) = a 0 + ∑ k = 1 ∞ a k cos ⁡ k π x l a 0 = 1 2 l ∫ − l l F ( x ) d x = 1 l ∫ 0 l f ( x ) d x a k = 1 l ∫ − l l F ( x ) cos ⁡ k π x l d x = 2 l ∫ 0 l f ( x ) cos ⁡ k π x l d x F\left( x \right) =\left\{ \begin{array}{c} f\left( x \right) ,x\in \left( 0,l \right)\\ f\left( -x \right) ,x\in \left( -l,0 \right)\\ \end{array} \right. \\ F\left( x \right) =a_{0+}\sum_{k=1}^{\infty}{a_k\cos \frac{k\pi x}{l}} \\ a_0=\frac{1}{2l}\int_{-l}^l{F\left( x \right) dx}=\frac{1}{l}\int_0^l{f\left( x \right) dx} \\ a_k=\frac{1}{l}\int_{-l}^l{F\left( x \right) \cos \frac{k\pi x}{l}dx}=\frac{2}{l}\int_0^l{f\left( x \right) \cos \frac{k\pi x}{l}dx} \\ F(x)={f(x),x(0,l)f(x),x(l,0)F(x)=a0+k=1akcoslxa0=2l1llF(x)dx=l10lf(x)dxak=l1llF(x)coslxdx=l20lf(x)coslxdx
在间断点 t 0 t_0 t0处,右端收敛于
1 2 [ f T ( t 0 + 0 ) + f T ( t 0 − 0 ) ] \frac{1}{2}\Big[f_T(t_0+0) +f_T(t_0-0) \Big] 21[fT(t0+0)+fT(t00)]
复指数形式:

傅里叶变换有傅里叶正弦余弦变换,还有复数形式的傅里叶变换,其实两个都是一个东西,可以相互推导出来,我们物理当中使用较多的是复数形式的傅里叶变换,而正余弦变换显得比较冗长,所以我们再次只介绍傅里叶变换的复数形式,如果需要那个冗长的形式的话可以用欧拉公式现场推导一下,推导过程不难,只是比较繁琐

我们先来介绍傅里叶展开的复数形式

欧拉公式告诉我们总是能够把正弦乘 i i i与余弦的和写成一个一个指数形式
cos ⁡ k π x l + i sin ⁡ k π x l = e i k π x / l \cos \frac{k\pi x}{l}+i\sin \frac{k\pi x}{l}=e^{ik\pi x/l} coslx+isinlx=eikπx/l
我们尝试用这个指数函数来作为基底展开一下一个周期函数
1 2 l ∫ − l l ( e i k π x / l ) ∗ e i n π x / l d x = δ k n f ( x ) = ∑ k = − ∞ ∞ c k e i k π x / l c k = 1 2 l ∫ − l l f ( x ) e − i k π x / l d x \frac{1}{2l}\int_{-l}^l{\left( e^{ik\pi x/l} \right) ^*}e^{in\pi x/l}dx=\delta _{kn} \\ f\left( x \right) =\sum_{k=-\infty}^{\infty}{c_ke^{ik\pi x/l}} \\ c_k=\frac{1}{2l}\int_{-l}^l{f\left( x \right)}e^{-ik\pi x/l}dx \\ 2l1ll(eikπx/l)einπx/ldx=δknf(x)=k=ckeikπx/lck=2l1llf(x)eikπx/ldx
如果我们不想仅仅停留在周期函数的研究之上,我们想要研究一下非周期函数就算不能够做展开,但是我们能不能够把非周期函数用一种类似的形式表达出来呢?

我们先来观察一下我们的复数形式的傅里叶展开
f ( x ) = ∑ m = − ∞ ∞ c m e i m π x / l , c m = 1 2 l ∫ − l l f ( x ) e − i m π x / l d x f\left( x \right) =\sum_{m=-\infty}^{\infty}{c_me^{im\pi x/l}},c_m=\frac{1}{2l}\int_{-l}^l{f\left( x \right)}e^{-im\pi x/l}dx \\ f(x)=m=cmeimπx/l,cm=2l1llf(x)eimπx/ldx
我们把第二个式子带到第一个式子里面把两个融合一下试试

f ( x ) = ∑ m = − ∞ ∞ [ 1 2 l ∫ − l l f ( ξ ) e − i m π ξ / l d ξ ] e i m π x / l f\left( x \right) =\sum_{m=-\infty}^{\infty}{\left[ \frac{1}{2l}\int_{-l}^l{f\left( \xi \right)}e^{-im\pi \xi /l}d\xi \right] e^{im\pi x/l}} \\ f(x)=m=[2l1llf(ξ)eimπξ/ldξ]eimπx/l

我们为了防止混淆两个部分的自变量,所以我们把展开系数里面的自变量用另外一个希腊字母替代一下

然后我们思考一下,根据我们内积的定义,我们如果想要左边的函数是全空间的非周期函数的话,我们的积分区间首先将是全空间而不是这一小段对吧。

再者我们思考一下在最开始的时候我们为什么是搞出来了一个周期函数的非不是非周期函数的呢?

原因在于我们的三角函数的基底是在那个区间内才正交的对吧,而控制周期大小的其实是 m π / l 对 m\pi/l 对 /l吧,那我们试试改变一下我们求和的对象

我们令 k ≡ m π / l k\equiv m\pi/l k/l那么我们原本的式子就也需要做一个代换
f ( x ) = ∑ m = − ∞ ∞ [ 1 2 l ∫ − l l f ( ξ ) e − i k ξ d ξ ] e i k x f\left( x \right) =\sum_{m=-\infty}^{\infty}{\left[ \frac{1}{2l}\int_{-l}^l{f\left( \xi \right)}e^{-ik\xi}d\xi \right] e^{ikx}} \\ f(x)=m=[2l1llf(ξ)eikξdξ]eikx
注意这个式子
∑ m = − ∞ ∞ [ 1 2 l ∫ − l l f ( ξ ) e − i k ξ d ξ ] e i k x \sum_{m=-\infty}^{\infty}{\left[ \frac{1}{2l}\int_{-l}^l{f\left( \xi \right)}e^{-ik\xi}d\xi \right] e^{ikx}} \\ m=[2l1llf(ξ)eikξdξ]eikx
我们还得再改变一下括号里面的那个积分前面的常数以保证我们这个新的基底的正交归一性,因为这个常数是我们归一化基底用的常数,我们现在基底已经变了,我们得重新计算一下这个常数

其实常数计算很简单,我们直接变换 k k k的值就可以发现这个积分跟克罗内克符号的那个积分是一样的
∫ − l l e i k ’ ξ e − i k ξ d ξ = 2 π δ k ′ , k \int_{-l}^le^{ik’\xi}e^{-ik\xi}d\xi=2\pi\delta_{k',k} lleikξeikξdξ=2πδk,k
我们会发现这个常数我们现在应该取 1 / 2 π 1/2\pi 1/2π 那么我们就给原来的式子乘上一个 π \pi π 再除以一个 π \pi π ,那么他就会变成这样
∑ m = − ∞ ∞ [ 1 2 π ∫ − l l f ( ξ ) e − i k ξ d ξ ] e i k x ( π / l ) \sum_{m=-\infty}^{\infty}{\left[ \frac{1}{2\pi}\int_{-l}^l{f\left( \xi \right)}e^{-ik\xi}d\xi \right] e^{ikx}}(\pi /l) \\ m=[2π1llf(ξ)eikξdξ]eikx(π/l)
我们会发现最右边的那个括号里面的东西就是相邻的两个k的值的差,那么我们就把他写成 \Delta k
∑ m = − ∞ ∞ [ 1 2 π ∫ − l l f ( ξ ) e − i k ξ d ξ ] e i k x Δ k \sum_{m=-\infty}^{\infty}{\left[ \frac{1}{2\pi}\int_{-l}^l{f\left( \xi \right)}e^{-ik\xi}d\xi \right] e^{ikx}}\Delta k \\ m=[2π1llf(ξ)eikξdξ]eikxΔk
我们现在已经把原本的基底改变了对吧,那么我们的相应的积分区间也就应该是要再全空间上面了,所以我们让我们的l趋向于正无穷,加上这一个条件之后我们的k也就会趋向于0

我们的k是根据m变化的对吧那么我们顺便再把k写的规范一点儿
lim ⁡ Δ k → 0 ∑ m = − ∞ ∞ [ 1 2 π ∫ − ∞ ∞ f ( ξ ) e − i k m ξ d ξ ] e i k x Δ k m \underset{\Delta k\rightarrow 0}{\lim}\sum_{m=-\infty}^{\infty}{\left[ \frac{1}{2\pi}\int_{-\infty}^{\infty}{f\left( \xi \right)}e^{-ik_m\xi}d\xi \right] e^{ikx}}\Delta k_m \\ Δk0limm=[2π1f(ξ)eikmξdξ]eikxΔkm
不知道你看出来了没有,这个不就是我们积分的定义式嘛,那我们就直接把求和改成积分就好了
∫ − ∞ ∞ [ 1 2 π ∫ − ∞ ∞ f ( ξ ) e − i k ξ d ξ ] e i k x d k \int_{-\infty}^{\infty}{{\left[ \frac{1}{2\pi}\int_{-\infty}^{\infty}{f\left( \xi \right)}e^{-ik\xi}d\xi \right] e^{ikx}}dk} \\ [2π1f(ξ)eikξdξ]eikxdk
那我们让非周期函数直接等于这个东西就好了

因为我们此时取内积的区间已经被我们拓展到全空间了,而不是一个小周期内

我们管这个东西叫做傅里叶变换
f ( x ) = 1 2 π ∫ − ∞ ∞ C k e i k x d k C k = ∫ − ∞ ∞ f ( x ) e − i k x d x f\left( x \right) =\frac{1}{2\pi}\int_{-\infty}^{\infty}{C_ke^{ikx}dk} \\ C_k=\int_{-\infty}^{\infty}{f\left( x \right)}e^{-ikx}dx \\ f(x)=2π1CkeikxdkCk=f(x)eikxdx
下面那个 C k C_k Ck此时就是 k k k的函数了,我们管他叫做相空间的函数,同样,我们可以把前面那个常数移一下位置,或者把他裂开写成一个比较对称的形式
f ( x ) = 1 2 π ∫ − ∞ ∞ C k e i k x d k F [ f ( x ) ] = C k = 1 2 π ∫ − ∞ ∞ f ( x ) e − i k x d x f\left( x \right) =\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}{C_ke^{ikx}dk} \\ \mathscr{F}[f(x)]=C_k=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}{f\left( x \right)}e^{-ikx}dx \\ f(x)=2π 1CkeikxdkF[f(x)]=Ck=2π 1f(x)eikxdx
我们的工作就结束啦,是不是很神奇?

我们紧接着再讲几个傅里叶变换的性质

  • 线性定理
    F [ a 1 f ( x ) + a 2 f ( x ) ] = a 1 F [ f ( x ) ] + a 2 F [ f ( x ) ] \mathscr{F} \left[ a_1f\left( x \right) +a_2f\left( x \right) \right] =a_1\mathscr{F} \left[ f\left( x \right) \right] +a_2\mathscr{F} \left[ f\left( x \right) \right] F[a1f(x)+a2f(x)]=a1F[f(x)]+a2F[f(x)]

证明
F [ a 1 f ( x ) + a 2 f ( x ) ] = 1 2 π ∫ − ∞ ∞ [ a 1 f ( x ) + a 2 f ( x ) ] e − i k x d x = 1 2 π ∫ − ∞ ∞ a 1 f ( x ) e − i k x d x + 1 2 π ∫ − ∞ ∞ a 2 f ( x ) e − i k x d x = a 1 1 2 π ∫ − ∞ ∞ f ( x ) e − i k x d x + a 2 1 2 π ∫ − ∞ ∞ f ( x ) e − i k x d x = a 1 F [ f ( x ) ] + a 2 F [ f ( x ) ] \mathscr{F} \left[ a_1f\left( x \right) +a_2f\left( x \right) \right] =\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}{\left[ a_1f\left( x \right) +a_2f\left( x \right) \right]}e^{-ikx}dx \\ =\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}{a_1f\left( x \right)}e^{-ikx}dx+\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}{a_2f\left( x \right)}e^{-ikx}dx \\ =a_1\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}{f\left( x \right)}e^{-ikx}dx+a_2\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}{f\left( x \right)}e^{-ikx}dx \\ =a_1\mathscr{F} \left[ f\left( x \right) \right] +a_2\mathscr{F} \left[ f\left( x \right) \right] \\ F[a1f(x)+a2f(x)]=2π 1[a1f(x)+a2f(x)]eikxdx=2π 1a1f(x)eikxdx+2π 1a2f(x)eikxdx=a12π 1f(x)eikxdx+a22π 1f(x)eikxdx=a1F[f(x)]+a2F[f(x)]

  • 延迟定理:
    F [ f ( x − x 0 ) ] = e − i k x 0 F [ f ( x ) ] \mathscr{F} \left[ f\left( x-x_0 \right) \right] =e^{-ikx_0}\mathscr{F} \left[ f\left( x \right) \right] F[f(xx0)]=eikx0F[f(x)]

证明
F [ f ( x − x 0 ) ] = 1 2 π ∫ − ∞ ∞ f ( x ) e − i k ( x + x 0 ) d x = e − i k x 0 1 2 π ∫ − ∞ ∞ f ( x ) e − i k x d x = e − i k x 0 F [ f ( x ) ] \mathscr{F} \left[ f\left( x-x_0 \right) \right] =\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}{f\left( x \right)}e^{-ik\left( x+x_0 \right)}dx \\ =e^{-ikx_0}\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}{f\left( x \right)}e^{-ikx}dx \\ =e^{-ikx_0}\mathscr{F} \left[ f\left( x \right) \right]\\ F[f(xx0)]=2π 1f(x)eik(x+x0)dx=eikx02π 1f(x)eikxdx=eikx0F[f(x)]

  • 位移定理:
    F [ f ( x ) e i k 0 x ] = C ( k − k 0 ) \mathscr{F} \left[ f\left( x \right) e^{ik_0x} \right] =C\left( k-k_0 \right) F[f(x)eik0x]=C(kk0)

证明
F [ f ( x ) e i k 0 x ] = 1 2 π ∫ − ∞ ∞ f ( x ) e i k 0 x e − i k x d x = 1 2 π ∫ − ∞ ∞ f ( x ) e − i ( k − k 0 ) x d x = C ( k − k 0 ) \mathscr{F} \left[ f\left( x \right) e^{ik_0x} \right] =\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}{f\left( x \right)}e^{ik_0x}e^{-ikx}dx \\ =\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}{f\left( x \right)}e^{-i\left( k-k_0 \right) x}dx \\ =C\left( k-k_0 \right) \\ F[f(x)eik0x]=2π 1f(x)eik0xeikxdx=2π 1f(x)ei(kk0)xdx=C(kk0)

  • 微分定理:
    F [ d f ( x ) d x ] = i k F [ f ( x ) ] \mathscr{F} \left[ \frac{df\left( x \right)}{dx} \right] =ik\mathscr{F} \left[ f\left( x \right) \right] F[dxdf(x)]=ikF[f(x)]

证明:
F [ d f ( x ) d x ] = 1 2 π ∫ − ∞ ∞ d f ( x ) d x e − i k x d x = 1 2 π { e − i k x f ( x ) ∣ ∞ − ∞ + i k ∫ − ∞ ∞ f ( x ) e − i k x d x } = i k 1 2 π ∫ − ∞ ∞ f ( x ) e − i k x d x = i k F [ f ( x ) ] \mathscr{F} \left[ \frac{df\left( x \right)}{dx} \right] =\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}{\frac{df\left( x \right)}{dx}}e^{-ikx}dx \\ =\frac{1}{\sqrt{2\pi}}\left\{ e^{-ikx}f\left( x \right) \left| \begin{array}{c} \infty\\ -\infty\\ \end{array}+ik\int_{-\infty}^{\infty}{f\left( x \right)}e^{-ikx}dx \right. \right\} \\ =ik\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}{f\left( x \right)}e^{-ikx}dx \\ =ik\mathscr{F} \left[ f\left( x \right) \right] \\ F[dxdf(x)]=2π 1dxdf(x)eikxdx=2π 1{eikxf(x) +ikf(x)eikxdx}=ik2π 1f(x)eikxdx=ikF[f(x)]

  • 卷积定理
    F [ f 1 ( x ) ∗ f 2 ( x ) ] = F [ f 1 ( x ) ] F [ f 2 ( x ) ] \mathscr{F} \left[ f_1\left( x \right) *f_2\left( x \right) \right] =\mathscr{F} \left[ f_1\left( x \right) \right] \mathscr{F} \left[ f_2\left( x \right) \right] F[f1(x)f2(x)]=F[f1(x)]F[f2(x)]

证明:
f 1 ( x ) ∗ f 2 ( x ) = ∫ − ∞ ∞ f 1 ( ξ ) f 2 ( x − ξ ) d ξ F [ f 1 ( x ) ∗ f 2 ( x ) ] = ∫ − ∞ ∞ [ ∫ − ∞ ∞ f 1 ( ξ ) f 2 ( x − ξ ) d ξ ] e − i k x d x = ∫ − ∞ ∞ [ ∫ − ∞ ∞ f 2 ( x − ξ ) e − i k x d x ] f 1 ( ξ ) d ξ = ∫ − ∞ ∞ [ ∫ − ∞ ∞ f 2 ( x ) e − i k x d x ] f 1 ( ξ ) e − i k ξ d ξ = ∫ − ∞ ∞ f 2 ( x ) e − i k x d x ∫ − ∞ ∞ f 1 ( ξ ) e − i k ξ d ξ = F [ f 1 ( x ) ] F [ f 2 ( x ) ] f_1\left( x \right) *f_2\left( x \right) =\int_{-\infty}^{\infty}{f_1\left( \xi \right)}f_2\left( x-\xi \right) d\xi \\ \mathscr{F} \left[ f_1\left( x \right) *f_2\left( x \right) \right] =\int_{-\infty}^{\infty}{\left[ \int_{-\infty}^{\infty}{f_1\left( \xi \right)}f_2\left( x-\xi \right) d\xi \right]}e^{-ikx}dx \\ =\int_{-\infty}^{\infty}{\left[ \int_{-\infty}^{\infty}{f_2\left( x-\xi \right) e^{-ikx}dx} \right] f_1\left( \xi \right) d\xi} \\ =\int_{-\infty}^{\infty}{\left[ \int_{-\infty}^{\infty}{f_2\left( x \right) e^{-ikx}dx} \right] f_1\left( \xi \right) e^{-ik\xi}d\xi} \\ =\int_{-\infty}^{\infty}{f_2\left( x \right) e^{-ikx}dx}\int_{-\infty}^{\infty}{f_1\left( \xi \right) e^{-ik\xi}d\xi} \\ =\mathscr{F} \left[ f_1\left( x \right) \right] \mathscr{F} \left[ f_2\left( x \right) \right]\\ f1(x)f2(x)=f1(ξ)f2(xξ)dξF[f1(x)f2(x)]=[f1(ξ)f2(xξ)dξ]eikxdx=[f2(xξ)eikxdx]f1(ξ)dξ=[f2(x)eikxdx]f1(ξ)eikξdξ=f2(x)eikxdxf1(ξ)eikξdξ=F[f1(x)]F[f2(x)]

  • 坐标缩放定理:
    F [ f ( a x ) ] = 1 ∣ a ∣ C ( k a ) \mathscr{F} \left[ f\left( ax \right) \right] =\frac{1}{|a|}C\left( \frac{k}{a} \right) F[f(ax)]=a1C(ak)

证明
a > 0 : F [ f ( a x ) ] = ∫ − ∞ ∞ f ( a x ) e − i k x d x = 1 a ∫ − ∞ ∞ f ( x ) e − i k x a d x = 1 ∣ a ∣ C ( k a ) a < 0 : F [ f ( a x ) ] = ∫ − ∞ ∞ f ( a x ) e − i k x d x = − 1 a ∫ − ∞ ∞ f ( x ) e − i k x a d x = 1 ∣ a ∣ C ( k a ) a>0: \\ \mathscr{F} \left[ f\left( ax \right) \right] =\int_{-\infty}^{\infty}{f\left( ax \right)}e^{-ikx}dx=\frac{1}{a}\int_{-\infty}^{\infty}{f\left( x \right)}e^{-ik\frac{x}{a}}dx=\frac{1}{|a|}C\left( \frac{k}{a} \right) \\ a<0: \\ \mathscr{F} \left[ f\left( ax \right) \right] =\int_{-\infty}^{\infty}{f\left( ax \right)}e^{-ikx}dx=-\frac{1}{a}\int_{-\infty}^{\infty}{f\left( x \right)}e^{-ik\frac{x}{a}}dx=\frac{1}{|a|}C\left( \frac{k}{a} \right) \\ a>0:F[f(ax)]=f(ax)eikxdx=a1f(x)eikaxdx=a1C(ak)a<0:F[f(ax)]=f(ax)eikxdx=a1f(x)eikaxdx=a1C(ak)

  • 21
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值