天气学原理课堂笔记(一)大气运动基本特征(2024.3-2024.6)

一、大气运动的基本特征

前言

本课程使用教材为《天气学原理和方法(第四版)》(气象出版社),文章根据课堂笔记和教材内容整理订正编写,文章内容如有错误,请指正。

系列文章链接如下:

大气运动基本特征
气团与锋
气旋与反气旋
天气形势与天气要素预报
大气环流



旋转坐标系中的真实力

气压梯度力

气压梯度存在形成气压梯度力,促使大气运动

使用立方体气块模型分三个方向分析,单位质量气块受到的净压力称为气压梯度力,用矢量表示为
G ⃗ = − 1 ρ ∇ p \vec{G}=-\frac{1}{\rho} \nabla p G =ρ1p
其中 − ∇ p - \nabla p p 表示气压梯度力是由高压指向低压

地心引力

根据牛顿万有引力公式的矢量形式得到
F ⃗ = − G M m r 2 ⋅ r ⃗ r \vec{F} = - \frac{GMm}{r^2} \cdot \frac{\vec{r}}{r} F =r2GMmrr

摩擦力

流体摩擦力理解为单位质量流体所受到的净粘滞力

从微观上看,粘滞力的产生是由于分子无规则运动引起的动量交换

粘滞力与风速垂直切变成正比

假设大气沿着 x x x 正方向运动且速度 u u u 随高度增加而增加
f z x = μ A ∂ u ∂ z = A τ z x f_{zx} = \mu A \frac{\partial u}{\partial z} = A \tau_{zx} fzx=μAzu=Aτzx
其中 A A A 为面积,去除面积可得到单位面积的切应力 τ z x \tau_{zx} τzx

对于一个空气块,若速度 u u u 随高度线性变化,根据以上公式得气块上界面与下界面的粘滞力抵消,净粘滞力为0

由此可得摩擦力主要是由风在垂直方向上非线性变化引起,而对于实际问题,水平方向上的非线性变化可以忽略,因此可做近似
F ⃗ = μ ρ ∇ 2 V ⃗ ≈ ν ( ∂ 2 u ∂ z 2 i ⃗ + ∂ 2 v ∂ z 2 j ⃗ + ∂ 2 w ∂ z 2 k ⃗ ) \vec{F} = \frac{\mu}{\rho} \nabla ^2 \vec{V} \approx \nu(\frac{\partial ^2 u}{\partial z^2} \vec{i}+\frac{\partial ^2 v}{\partial z^2} \vec{j}+\frac{\partial ^2 w}{\partial z^2} \vec{k}) F =ρμ2V ν(z22ui +z22vj +z22wk )

旋转坐标系中的非真实力

惯性离心力

物体旋转时的向心加速度为
d V ⃗ d t = − Ω 2 R ⃗ \frac{d\vec{V}}{dt} = - \Omega ^2 \vec{R} dtdV =Ω2R

可得到旋转坐标系下的惯性离心力(Centrifugal Force)
C ⃗ = Ω 2 R ⃗ \vec{C} = \Omega^2 \vec{R} C =Ω2R

重力

将地心引力与惯性离心力矢量相加可得到重力,地球为椭球体,重力垂直于地球表面

地转偏向力

物体在旋转坐标系中运动发生偏向,为了描述这样的偏向,在旋转坐标系中引入地转偏向力

设有一物体在地球纬度为 ϕ \phi ϕ 的位置
A ⃗ = − 2 Ω ⃗ × V ⃗ = − 2 ∣ i ⃗ j ⃗ k ⃗ 0 Ω cos ⁡ ϕ Ω sin ⁡ ϕ u v w ∣ \vec{A} = -2 \vec{\Omega } \times \vec{V}=-2 \left | \begin{matrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & \Omega \cos \phi & \Omega \sin \phi \\ u & v & w \\ \end{matrix} \right | A =2Ω ×V =2 i 0uj Ωcosϕvk Ωsinϕw

定义
f = 2 Ω sin ⁡ ϕ f= 2 \Omega \sin \phi f=sinϕ
用于计算水平方向地转偏向力

推导:动力气象学角动量守恒方法

设北半球中纬度某地区有一西风,风速为 u ⃗ \vec{u} u ,可得该空气块角动量
L ⃗ = R ⃗ × ( u ⃗ + Ω × R ⃗ ) \vec{L} = \vec{R} \times ( \vec{u} + \Omega \times \vec{R}) L =R ×(u +Ω×R )
若此时该向东运动的空气块受到一定的扰动,使其向南北偏移或向上偏移无穷小量,使得垂直地轴半径变为 R + δ R R+\delta R R+δR
( R ⃗ + δ R ⃗ ) × ( u ⃗ + δ u ⃗ ) + ( R ⃗ + δ R ⃗ ) × Ω ⃗ × ( R ⃗ + δ R ⃗ ) = R ⃗ × ( u ⃗ + Ω ⃗ × R ⃗ ) (\vec{R} + \delta \vec{R}) \times (\vec{u}+\delta \vec{u}) + (\vec{R} + \delta \vec{R}) \times \vec{\Omega} \times (\vec{R} +\delta \vec{R}) = \vec{R} \times (\vec{u} + \vec{\Omega} \times \vec{R}) (R +δR )×(u +δu )+(R +δR )×Ω ×(R +δR )=R ×(u +Ω ×R )
假设初始 u = 0 u=0 u=0,对方程化简可得
Ω R 2 = ( Ω + δ u R + δ R ) ( R + δ R ) 2 \Omega R^2 = (\Omega + \frac{\delta u}{R+\delta R})(R+\delta R)^2 ΩR2=(Ω+R+δRδu)(R+δR)2
解此方程并忽略高阶无穷小得到
δ u = − 2 Ω δ R \delta u = -2\Omega \delta R δu=δR
设该点纬度为 ϕ \phi ϕ
δ R = δ z cos ⁡ ϕ − δ y sin ⁡ ϕ \delta R = \delta z \cos \phi - \delta y\sin \phi δR=δzcosϕδysinϕ
代入得到地转偏向力 x x x 方向分量
δ u = − 2 Ω ( δ z cos ⁡ ϕ − δ y sin ⁡ ϕ ) \delta u = -2 \Omega (\delta z \cos \phi - \delta y \sin \phi) δu=(δzcosϕδysinϕ)
d u d t = − 2 Ω ( w cos ⁡ ϕ − v sin ⁡ ϕ ) \frac{du}{dt} = -2 \Omega (w \cos \phi - v \sin \phi) dtdu=(wcosϕvsinϕ)
当有相对运动 u u u 时,惯性离心力表达式
C ⃗ = ( Ω + u R ) 2 R ⃗ \vec{C} = (\Omega +\frac{u}{R})^2 \vec{R} C =(Ω+Ru)2R
展开忽略高阶无穷小(即第三项)可得
C ⃗ ≈ Ω 2 R ⃗ + 2 Ω u R ⃗ R \vec{C} \approx \Omega ^2 \vec{R} + 2 \Omega u \frac{\vec{R}}{R} C Ω2R +uRR
与没有相对运动时相比,增加的一部分惯性离心力表现为地转偏向力,可得到另外两个分量
d w d t = 2 Ω u cos ⁡ ϕ \frac{dw}{dt} = 2\Omega u \cos \phi dtdw=ucosϕ
d v d t = − 2 Ω u sin ⁡ ϕ \frac{dv}{dt} = -2 \Omega u \sin \phi dtdv=usinϕ
综上可得最终矢量表达式

大尺度大气运动是准水平的,垂直方向上运动速度很小(比水平方向少 1 0 2 10^{2} 102 量级)可以忽略

球坐标系与局地直角坐标系的坐标变换

设地球中纬度有一点,经纬度位置为 ( λ , ϕ ) (\lambda , \phi) (λ,ϕ), 地球半径为 r r r,在该点建立局地直角坐标系,向东为 x x x 正方向,向北为 y y y 正方向,垂直地表为 z z z 正方向,可得
{ d x = r cos ⁡ ϕ d λ d y = r d ϕ d z = d r \begin{cases} dx = r \cos \phi d \lambda \\ dy = r d \phi \\ dz = dr \\ \end{cases} dx=rcosϕdλdy=rdϕdz=dr

控制大气运动的基本规律

局地导数和全导数的关系

根据Lagrange参考系和欧拉参考系关系
d ( □ ) d t = ∂ ( □ ) ∂ t + ( V ⃗ ⋅ ∇ ) ( □ ) \frac{d(\square)}{dt} = \frac{\partial (\square)}{\partial t} +(\vec{V} \cdot \nabla ) (\square) dtd()=t()+(V )()
移项可得
∂ ( □ ) ∂ t = d ( □ ) d t − ( V ⃗ ⋅ ∇ ) ( □ ) \frac{\partial (\square)}{\partial t} = \frac{d(\square)}{dt} - (\vec{V} \cdot \nabla ) (\square) t()=dtd()(V )()
其中括号内可以是很多物理量,物理量的局地变化个体变化平流变化组成

大气运动方程的矢量形式

d V ⃗ d t = − 1 ρ ∇ p − 2 Ω ⃗ × V ⃗ + g ⃗ + F ⃗ \frac{d\vec{V}}{dt} = -\frac{1}{\rho} \nabla p -2 \vec{\Omega} \times \vec{V} + \vec{g} + \vec{F} dtdV =ρ1p2Ω ×V +g +F
右式分别是气压梯度力、地转偏向力、重力、摩擦力

大气运动方程在局地直角坐标系中的形式

{ d u d t = − 1 ρ ∂ p ∂ x + 2 Ω ( v sin ⁡ ϕ − w cos ⁡ ϕ ) + F x d v d t = − 1 ρ ∂ p ∂ y − 2 Ω u sin ⁡ ϕ + F y d w d t = − 1 ρ ∂ p ∂ z + 2 Ω u cos ⁡ ϕ − g + F z \begin{cases} \frac{du}{dt} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + 2\Omega(v\sin \phi -w\cos \phi ) + F_x\\ \frac{dv}{dt} = -\frac{1}{\rho} \frac{\partial p}{\partial y} -2\Omega u \sin \phi + F_y \\ \frac{dw}{dt} = -\frac{1}{\rho} \frac{\partial p}{\partial z} +2\Omega u \cos \phi -g + F_z \\ \end{cases} dtdu=ρ1xp+(vsinϕwcosϕ)+Fxdtdv=ρ1ypusinϕ+Fydtdw=ρ1zp+ucosϕg+Fz

大气运动方程在球坐标系中的形式

首先矢量求导
d V ⃗ d t = d u d t i ⃗ + d v d t j ⃗ + d w d t k ⃗ + u d i ⃗ d t + v d j ⃗ d t + w d k ⃗ d t \frac{d\vec{V}}{dt} = \frac{du}{dt} \vec{i} + \frac{dv}{dt} \vec{j} + \frac{dw}{dt} \vec{k} + u \frac{d\vec{i}}{dt} +v \frac{d\vec{j}}{dt} + w \frac{d\vec{k}}{dt} dtdV =dtdui +dtdvj +dtdwk +udtdi +vdtdj +wdtdk
其中在球坐标系下
d i ⃗ d t = ∂ i ⃗ ∂ t + ∂ i ⃗ ∂ λ d λ d t + ∂ i ⃗ ∂ ϕ d ϕ d t + ∂ i ⃗ ∂ r d r d t \frac{d\vec{i}}{dt} = \frac{\partial \vec{i}}{\partial t} +\frac{\partial \vec{i}}{\partial \lambda}\frac{d\lambda}{dt} +\frac{\partial \vec{i}}{\partial \phi}\frac{d\phi}{dt} +\frac{\partial \vec{i}}{\partial r}\frac{dr}{dt} dtdi =ti +λi dtdλ+ϕi dtdϕ+ri dtdr
其余方向同理,根据球面上的几何特征可得(画图分析)
∂ i ⃗ ∂ ϕ = ∂ i ⃗ ∂ r = ∂ j ⃗ ∂ r = ∂ k ⃗ ∂ r = 0 \frac{\partial \vec{i}}{\partial \phi} = \frac{\partial \vec{i}}{\partial r} = \frac{\partial \vec{j}}{\partial r} = \frac{\partial \vec{k}}{\partial r} = 0 ϕi =ri =rj =rk =0
∂ i ⃗ ∂ t = ∂ i ⃗ ∂ t = ∂ i ⃗ ∂ t = 0 \frac{\partial \vec{i}}{\partial t} = \frac{\partial \vec{i}}{\partial t} = \frac{\partial \vec{i}}{\partial t} = 0 ti =ti =ti =0
根据坐标变换可得
{ d i ⃗ d t = u r cos ⁡ ϕ ∂ i ⃗ ∂ λ d j ⃗ d t = u r cos ⁡ ϕ ∂ j ⃗ ∂ λ + v r ∂ j ⃗ ∂ ϕ d k ⃗ d t = u r cos ⁡ ϕ ∂ k ⃗ ∂ λ + v r ∂ k ⃗ ∂ ϕ \begin{cases} \frac{d\vec{i}}{dt} = \frac{u}{r \cos \phi} \frac{\partial \vec{i}}{\partial \lambda} \\ \frac{d\vec{j}}{dt} = \frac{u}{r \cos \phi} \frac{\partial \vec{j}}{\partial \lambda} + \frac{v}{r} \frac{\partial \vec{j}}{\partial \phi} \\ \frac{d\vec{k}}{dt} = \frac{u}{r \cos \phi} \frac{\partial \vec{k}}{\partial \lambda} + \frac{v}{r} \frac{\partial \vec{k}}{\partial \phi} \\ \end{cases} dtdi =rcosϕuλi dtdj =rcosϕuλj +rvϕj dtdk =rcosϕuλk +rvϕk
在球面上根据几何关系及其弦和切线的近似可得
∂ i ⃗ ∂ λ = j ⃗ sin ⁡ ϕ − k ⃗ cos ⁡ ϕ \frac{\partial \vec{i}}{\partial \lambda} = \vec{j} \sin \phi - \vec{k} \cos \phi λi =j sinϕk cosϕ
∂ j ⃗ ∂ λ = − sin ⁡ ϕ i ⃗ \frac{\partial \vec{j}}{\partial \lambda} = - \sin \phi \vec{i} λj =sinϕi
∂ j ⃗ ∂ ϕ = − k ⃗ \frac{\partial \vec{j}}{\partial \phi} = - \vec{k} ϕj =k
k k k 方向类似,代入上式可得球坐标系加速度分解
d V ⃗ d t = ( d u d t − u v tan ⁡ ϕ r + u v r ) i ⃗ + ( d v d t + u 2 tan ⁡ ϕ r + v w r ) j ⃗ + ( d w d t − u 2 + v 2 r ) k ⃗ \frac{d\vec{V}}{dt} = (\frac{du}{dt} - \frac{uv \tan \phi}{r} + \frac{uv}{r}) \vec{i} +(\frac{dv}{dt} + \frac{u^2 \tan \phi}{r} + \frac{vw}{r}) \vec{j} + (\frac{dw}{dt} - \frac{u^2+v^2}{r}) \vec{k} dtdV =(dtduruvtanϕ+ruv)i +(dtdv+ru2tanϕ+rvw)j +(dtdwru2+v2)k
对气压梯度力进行分解
− 1 ρ ∇ p = − 1 ρ ( ∂ p r cos ⁡ ϕ ∂ λ ) i ⃗ + ∂ p r ∂ ϕ j ⃗ + ∂ p ∂ r k ⃗ -\frac{1}{\rho} \nabla p = -\frac{1}{\rho} (\frac{\partial p}{r \cos \phi \partial \lambda})\vec{i} + \frac{\partial p}{r\partial \phi} \vec{j} + \frac{\partial p}{\partial r} \vec{k} ρ1p=ρ1(rcosϕλp)i +rϕpj +rpk
同理对地转偏向力和摩擦力分解,重力只在 k k k 方向有分量,最终得到球坐标系下大气运动方程
{ d u d t − u v tan ⁡ ϕ r + u v r = − 1 ρ ( ∂ p r cos ⁡ ϕ ∂ λ ) + 2 Ω v sin ⁡ ϕ − 2 Ω w cos ⁡ ϕ + F λ d v d t + u 2 tan ⁡ ϕ r + v w r = − 1 ρ ∂ p r ∂ ϕ − 2 Ω u sin ⁡ ϕ + F ϕ d w d t − u 2 + v 2 r = − 1 ρ ∂ p ∂ r − g + 2 Ω u cos ⁡ ϕ + F r \begin{cases} \frac{du}{dt} - \frac{uv \tan \phi}{r} + \frac{uv}{r} = -\frac{1}{\rho} (\frac{\partial p}{r \cos \phi \partial \lambda}) + 2\Omega v \sin \phi - 2\Omega w \cos \phi +F_{\lambda} \\ \frac{dv}{dt} + \frac{u^2 \tan \phi}{r} + \frac{vw}{r} = -\frac{1}{\rho} \frac{\partial p}{r\partial \phi} -2\Omega u \sin \phi +F_{\phi} \\ \frac{dw}{dt} - \frac{u^2+v^2}{r} = - \frac{1}{\rho} \frac{\partial p}{\partial r}-g +2\Omega u \cos \phi + F_r \\ \end{cases} dtduruvtanϕ+ruv=ρ1(rcosϕλp)+vsinϕwcosϕ+Fλdtdv+ru2tanϕ+rvw=ρ1rϕpusinϕ+Fϕdtdwru2+v2=ρ1rpg+ucosϕ+Fr

状态方程

对于单位质量理想气体
p = ρ R T p = \rho RT p=ρRT

质量守恒与连续方程

  • Lagrange观点:
    d ρ d t = − ρ ∇ ⋅ V ⃗ \frac{d\rho}{dt} = - \rho \nabla \cdot \vec{V} dtdρ=ρV
    其中 ∇ ⋅ V ⃗ \nabla \cdot \vec{V} V 为速度散度
  • Eular观点:
    ∂ ρ ∂ t = − ∇ ⋅ ( ρ V ⃗ ) \frac{\partial \rho}{\partial t} = - \nabla \cdot (\rho \vec{V}) tρ=(ρV )
    其中 ∇ ⋅ ρ V ⃗ \nabla \cdot \rho \vec{V} ρV 可以理解为质量散度

能量方程

机械能方程为球坐标系中运动方程分别乘上 u , v , w u,v,w u,v,w 得到
d d t [ u 2 + v 2 + w 2 2 + ϕ ] = − 1 ρ V ⃗ ⋅ ∇ p + V ⃗ ⋅ F ⃗ \frac{d}{dt}[\frac{u^2+v^2+w^2}{2} +\phi]= -\frac{1}{\rho} \vec{V} \cdot \nabla p + \vec{V} \cdot \vec{F} dtd[2u2+v2+w2+ϕ]=ρ1V p+V F

热力学第一定律
c v d T d t + p d α d t = d Q d t c_v \frac{dT}{dt} + p \frac{d \alpha}{dt} = \frac{dQ}{dt} cvdtdT+pdtdα=dtdQ
其中 α \alpha α 为单位质量对应的体积,即比体积

根据理想气体状态方程的微分形式,可以变形方程
c p d T d t − α d p d t = d Q d t c_p \frac{dT}{dt} - \alpha \frac{dp}{dt} =\frac{dQ}{dt} cpdtdTαdtdp=dtdQ
反映了热能与机械能的转换,不同下垫面长波辐射不同,以及水汽潜热释放不同,大气获取的热量不同,因此会有不同的动能,使得大气运动。

绝热过程与位温
θ T = ( 1000 p ) R d c p \frac{\theta }{T}=(\frac{1000}{p})^{\frac{R_d}{c_p}} Tθ=(p1000)cpRd
其中 θ \theta θ 为位温, R d R_d Rd 为干空气气体常数

大气热力学稳定度
T ∂ θ θ ∂ z = ∂ T ∂ z + g c p = − Γ + Γ d \frac{T\partial \theta}{\theta \partial z} = \frac{\partial T}{\partial z} + \frac{g}{c_p} =-\Gamma +\Gamma_d θzTθ=zT+cpg=Γ+Γd

机械能方程与热力学第一定律结合得到总能量方程
d Q d t = d d t [ u 2 + v 2 + w 2 2 + ϕ + c v T + p α ] − α ∂ p ∂ t − V ⃗ ⋅ F ⃗ \frac{dQ}{dt} = \frac{d}{dt}[\frac{u^2+v^2+w^2}{2} + \phi + c_vT +p\alpha] -\alpha \frac{\partial p}{\partial t} -\vec{V} \cdot \vec{F} dtdQ=dtd[2u2+v2+w2+ϕ+cvT+pα]αtpV F

大尺度运动系统的控制方程

尺度分析

针对不同类型的运动估计基本方程各项量级的一种简便方法

对基本方程进行简化,忽略小项,从而得到大尺度系统(一般空间尺度大于1000km为大尺度)控制方程

大尺度系统的性质:准定常,准水平、准静态,地转平衡、无辐散

中纬度大尺度系统常见特征值
L ∼ 1 0 6 m , H ∼ 1 0 4 m , V ( u , v ) ∼ 10 m / s , w ∼ 1 0 − 2 m / s , t ∼ 1 0 5 s L \sim 10^6m,H \sim 10^4m,V(u,v) \sim 10 m/s, w \sim 10^{-2} m/s, t \sim 10^5 s L106m,H104m,V(u,v)10m/s,w102m/s,t105s
自左向右分别为水平位移、地面到对流层顶的高度、水平风速、垂直风速、水平运动 L L L 所需要的时间

基本方程的简化

  • 零级简化:保留方程中数量级最大的各项
  • 一级简化:保留方程中数量级最大和比它小一个数量级的各项(注意不是指第二大)

例:对于垂直方向上的运动方程
d w d t = − 1 ρ ∂ p ∂ z + 2 Ω u cos ⁡ ϕ − g + F z \frac{dw}{dt} = -\frac{1}{\rho} \frac{\partial p}{\partial z} +2\Omega u \cos \phi -g + F_z dtdw=ρ1zp+ucosϕg+Fz
数量级最大的项为 − 1 ρ ∂ p ∂ z , g -\frac{1}{\rho} \frac{\partial p}{\partial z},g ρ1zp,g,由此可得到静力平衡方程
− 1 ρ ∂ p ∂ z − g = 0 -\frac{1}{\rho} \frac{\partial p}{\partial z} - g = 0 ρ1zpg=0

气压坐标系中的基本方程组

位势高度与海拔高度

位势:单位质量空气从海平面上升到高度z时克服重力做的功
ϕ = ∫ 0 z g d z \phi = \int^{z}_0 gdz ϕ=0zgdz
假设重力加速度为 9.8 m / s 2 9.8 m/s^2 9.8m/s2 常量,根据位势可定义位势高度
H = 1 9.8 ∫ 0 z g d z = 1 9.8 ϕ H = \frac{1}{9.8} \int^{z}_0 g dz = \frac{1}{9.8} \phi H=9.810zgdz=9.81ϕ
单位为位势米 g p m gpm gpm,位势十米 10 g p m 10gpm 10gpm d a g p m dagpm dagpm

因为不同地点重力加速度并不一定相等,因此某一地点,位势高度与海拔高度并不一定相等,但很接近,等位势面与地球表面平行(把地球看作是椭球)

气压坐标系与高度坐标系的转换

等压面上气压固定
d p = ∂ p ∂ x d x + ∂ p ∂ y d y + ∂ p ∂ z d z = 0 dp = \frac{\partial p}{\partial x} dx + \frac{\partial p}{\partial y} dy + \frac{\partial p}{\partial z} dz = 0 dp=xpdx+ypdy+zpdz=0
再对高度 z z z 进行全微分
d z = ∂ z ∂ x d x + ∂ z ∂ y d y dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy dz=xzdx+yzdy
将两个全微分结果联立,可得到
∂ p ∂ x + ∂ p ∂ z ∂ z ∂ x = 0 ∂ p ∂ y + ∂ p ∂ z ∂ z ∂ y = 0 \begin{align*} \frac{\partial p}{\partial x} + \frac{\partial p}{\partial z}\frac{\partial z}{\partial x} = 0 \\ \frac{\partial p}{\partial y} + \frac{\partial p}{\partial z}\frac{\partial z}{\partial y} = 0 \\ \end{align*} xp+zpxz=0yp+zpyz=0
结合静力方程(p坐标系使用的前提)
∂ p ∂ z = − ρ g \frac{\partial p}{\partial z} = - \rho g zp=ρg
可得到气压梯度力为
− 1 ρ ∇ p = − ∇ ϕ -\frac{1}{\rho} \nabla p = - \nabla \phi ρ1p=ϕ

气压坐标系下的连续方程

∂ u ∂ x + ∂ v ∂ y + ∂ ω ∂ p = 0 \frac{\partial u}{\partial x} + \frac{\partial v }{\partial y} +\frac{\partial \omega}{\partial p} = 0 xu+yv+pω=0
其中 ω = ∂ p ∂ t \omega=\frac{\partial p}{\partial t} ω=tp 为气压坐标系下垂直方向速度,向下运动为正

气压坐标系下的能量方程

∂ T ∂ t + V h ⃗ ⋅ ∇ p T − σ p ω = 1 c p d Q d t \frac{\partial T}{\partial t} +\vec{V_h} \cdot \nabla_p T -\sigma_p \omega =\frac{1}{c_p} \frac{dQ}{dt} tT+Vh pTσpω=cp1dtdQ
大气绝热,定常且稳定层结时,暖平流上升,冷平流下沉

风场与气压场的关系

自然坐标系

自然坐标为曲线坐标,一般水平轴方向会随时间和地点发生变化,自然坐标系分为两个方向,切向和法向

在自然坐标系下,北半球,气旋周围空气流动的曲率半径为正,反气旋为负,且得到 ∂ p ∂ n < 0 \frac{\partial p}{\partial n} < 0 np<0

自然坐标系下的加速度可以分解为两个方向
d V ⃗ d t = d V d t τ ⃗ + V 2 R T n ⃗ \frac{d\vec{V}}{dt} = \frac{dV}{dt} \vec{\tau} + \frac{V^2}{R_T} \vec{n} dtdV =dtdVτ +RTV2n
其中第一项为切向加速度,第二项为法向加速度

结合气压梯度力和地转偏向力
d V d t = − ∂ ϕ ∂ s V 2 R T = − ∂ ϕ ∂ n − f V \begin{align} \frac{dV}{dt} &= - \frac{\partial \phi}{\partial s} \\ \frac{V^2}{R_T} &= -\frac{\partial \phi}{\partial n} - fV \\ \end{align} dtdVRTV2=sϕ=nϕfV

地转风

地转偏向力与气压梯度力平衡,即地转平衡,风沿着等压线运动
− ∂ ϕ ∂ n − f V g = 0 -\frac{\partial \phi}{\partial n} - fV_g = 0 nϕfVg=0
在p坐标系下地转风矢量表示
V ⃗ = − 1 f ∇ ϕ × k ⃗ = − 1 ρ f ∇ p × k ⃗ \vec{V} = -\frac{1}{f} \nabla \phi \times \vec{k} = -\frac{1}{\rho f} \nabla p \times \vec{k} V =f1ϕ×k =ρf1p×k
对于散度
∇ ⋅ V g ⃗ = ∇ ⋅ ( 1 f k ⃗ × ∇ ϕ ) = ∇ ⋅ ( − 1 f ∂ ϕ ∂ y i ⃗ + 1 f ∂ ϕ ∂ x j ⃗ ) = 0 \nabla \cdot \vec{V_g} = \nabla \cdot (\frac{1}{f} \vec{k} \times \nabla \phi) = \nabla \cdot (-\frac{1}{f} \frac{\partial \phi}{\partial y} \vec{i} + \frac{1}{f} \frac{\partial \phi}{\partial x} \vec{j}) = 0 Vg =(f1k ×ϕ)=(f1yϕi +f1xϕj )=0
可得地转风散度为0

一般用于中纬度地区大尺度天气系统,因为中纬度地区地转偏向力适中,对于低纬度地区,无法用地转风分析,需要借助其他方法如流函数

地转风不考虑摩擦力,加速度和垂直速度,对于曲率半径千公里量级可以近似为地转风

梯度风

上边提到的方程两端均考虑 − V 2 R T − ∂ ϕ ∂ n − f V = 0 -\frac{V^2}{R_T} - \frac{\partial \phi}{\partial n} - fV = 0 RTV2nϕfV=0

解此一元二次方程
V f = − R T 2 f ± R T 2 f 2 − 4 R T ∂ ϕ ∂ n V_f = \frac{-R_T}{2}f \pm \frac{R_T}{2} \sqrt{f^2 - \frac{4}{R_T} \frac{\partial \phi}{\partial n}} Vf=2RTf±2RTf2RT4nϕ
对气旋和反气旋分别分析,可得都应当取正号

高压中心附近气压梯度小,边缘气压梯度大(公式里根号内值为0),低压中心附近气压梯度力大

将梯度风方程与地转风方程联立可得
V g V f = 1 + V f f R T \frac{V_g}{V_f} = 1+ \frac{V_f}{fR_T} VfVg=1+fRTVf

V f − V g = − V f 2 f R T V_f - V_g = - \frac{V_f^2}{fR_T} VfVg=fRTVf2
其中 V g V_g Vg 为地转风,可得到中纬度气旋环流中,地转风比梯度风大,反气旋中,梯度风比地转风更大,两者相差并不大,但对于热带气旋,两者的差较大,因此地转关系不适用,改用梯度风分析

惯性流与旋衡流(选学)

惯性流:忽略气压梯度力,只考虑惯性离心力和地转偏向力的平衡

旋衡流:忽略地转偏向力,只考虑气压梯度力和惯性离心力的平衡,一般用于中小尺度天气系统如龙卷等

浅薄与深厚的高低压系统

  • 深厚:热高压、冷低压
  • 浅薄:热低压、冷高压

可以用静力平衡方程解释
∂ p ∂ z = − ρ g \frac{\partial p}{\partial z} = -\rho g zp=ρg
暖空气膨胀,密度减小,相同的气压值减小量,对应高度的增量会更大,因此会形成暖高压

热成风

热成风并非为真实的风,而是指地转风随高度的变化

关于西风的形成:因为南北空气受热不匀,导致两等压面之间的厚度发生变化,南北形成气压梯度力,气压梯度力与地转偏向力平衡后,形成西风,且对流层内海拔越高,斜压性越强,气压梯度越大,西风越强,可以认为在对流层内有西风热成风
热成风

其中等压面厚度与温度的关系
h = z 1 − z 0 = − ∫ p 0 p 1 R T p g d p = R g T ˉ ln ⁡ p 0 p 1 h = z_1 -z_0 = -\int_{p_0}^{p_1} \frac{RT}{pg} dp = \frac{R}{g} \bar{T} \ln \frac{p_0}{p_1} h=z1z0=p0p1pgRTdp=gRTˉlnp1p0
其中 p 0 > p 1 p_0 > p_1 p0>p1, T ˉ \bar{T} Tˉ 表示该气层的平均温度

可得热成风表达式
V T ⃗ = R f k ⃗ × ∇ h = R f ln ⁡ p 0 p 1 k ⃗ × ∇ T ˉ \vec{V_T} = \frac{R}{f} \vec{k} \times \nabla h = \frac{R}{f} \ln \frac{p_0}{p_1} \vec{k} \times \nabla \bar{T} VT =fRk ×h=fRlnp1p0k ×Tˉ

借助热成风分析暖平流与冷平流的方法

  • 风向随高度逆转冷平流
  • 风向随高度顺转暖平流

可画图分析
冷暖平流

当风向随高度逆转,热成风水平向东,可得到南边暖,北边冷,此时形成的平流为冷平流,暖平流同理

中纬度地区温压场

假设初始状态下,等温线平直,南暖北冷,近地面高度存在高低压中心,根据热成风原理,该场中的热成风应当为西风,则随着高度的增加,将热成风与近地面地转风叠加,可得高空地转风,原先的高低压中心会在高空转变为波状的脊、槽,且槽和脊之间的等压线不与等温线平行,形成暖平流或冷平流,导致原有平直的等温线不能维持,形成暖舌和冷舌

可见温度平流使得等温线(热成风)弯曲且变化落后于气压场变化

同时当等温线发生弯曲后,热成风方向发生变化,通过绘图分析可得,随高度增加,高空槽、脊会不断向西偏移
热成风

借助热成风也可以解释,暖性高压系统非常深厚(热成风与低层地转风同向),冷性高压系统比较浅薄(热成风与低层地转风反向),同理,冷低压非常深厚,暖低压比较浅薄

正压大气与斜压大气

  • 正压大气:大气密度仅与气压有关,热成风等于0,等压面与等温面、等密度面平行
  • 斜压大气:大气密度与气压和温度都有关,热成风不等于0,等压面与等温面相交

地转偏差

地转偏差描述实际风向与地转风之间的偏差
D ⃗ = V ⃗ − V g ⃗ \vec{D} = \vec{V} - \vec{V_g} D =V Vg

摩擦层中的地转偏差

地转偏差方向在摩擦力方向的右侧,这使得低压系统低层辐合,高压系统低层辐散
D ⃗ = V ⃗ − V g ⃗ = − 1 f k ⃗ × F ⃗ \vec{D} = \vec{V} -\vec{V_g} = -\frac{1}{f}\vec{k} \times \vec{F} D =V Vg =f1k ×F

自由大气加速度引起的地转偏差

自由大气中的摩擦力很小,可以忽略,当气压梯度力与地转偏向力不平衡时,会产生加速度
d V ⃗ d t = f k ⃗ × V g ⃗ − f k ⃗ × V ⃗ = − f k ⃗ × D ⃗ \frac{d\vec{V}}{dt} = f\vec{k} \times \vec{V_g} - f\vec{k} \times \vec{V} = -f \vec{k} \times \vec{D} dtdV =fk ×Vg fk ×V =fk ×D
地转偏差指向加速度左侧
D ⃗ = 1 f k ⃗ × d V ⃗ d t = 1 f k ⃗ × d V g ⃗ d t \vec{D} = \frac{1}{f} \vec{k} \times \frac{d\vec{V}}{dt} = \frac{1}{f} \vec{k} \times \frac{d\vec{V_g}}{dt} D =f1k ×dtdV =f1k ×dtdVg
为了在天气图上定性分析地转偏差,将加速度在自然坐标系下展开为局地加速度和平流加速度
D ⃗ = 1 f k ⃗ × ( ∂ V g ⃗ ∂ t + V g ∂ V g ⃗ ∂ s + ω ∂ V g ⃗ ∂ p ) = D 1 ⃗ + D 2 ⃗ + D 3 ⃗ \vec{D} = \frac{1}{f} \vec{k} \times (\frac{\partial \vec{V_g}}{\partial t} + V_g \frac{\partial \vec{V_g}}{\partial s} + \omega \frac{\partial \vec{V_g}}{\partial p}) = \vec{D_1}+\vec{D_2}+\vec{D_3} D =f1k ×(tVg +VgsVg +ωpVg )=D1 +D2 +D3

对于 D 1 D_1 D1 表示气压梯度力局地变化,导致气压梯度力与地转偏向力不平衡,引起的局地加速度
D 1 ⃗ = − 1 f 2 ρ ∇ ( ∂ p ∂ t ) = − 9.8 f 2 ∇ ( ∂ H ∂ t ) \vec{D_1} = -\frac{1}{f^2\rho} \nabla (\frac{\partial p}{\partial t}) = -\frac{9.8}{f^2} \nabla (\frac{\partial H}{\partial t}) D1 =f2ρ1(tp)=f29.8(tH)
在地面天气分析中,使用三小时变压来分析,变压梯度正中心,地转偏差为辐散,对应下沉气流

对于 D 2 D_2 D2 可以分解为法向和切向加速度引起的偏差
D 2 ⃗ = 1 f k ⃗ × ( V g ∂ V g ∂ s τ ⃗ + V g 2 n ⃗ R ) = 1 f V g ∂ V g ∂ s n ⃗ − 1 f V g 2 R τ ⃗ = D 2 n ⃗ + D 2 s ⃗ \vec{D_2} = \frac{1}{f} \vec{k} \times (V_g \frac{\partial V_g}{\partial s} \vec{\tau} + V_g^2 \frac{\vec{n}}{R}) = \frac{1}{f} V_g \frac{\partial V_g}{\partial s} \vec{n} - \frac{1}{f} \frac{V_g^2}{R} \vec{\tau} = \vec{D_{2n}} + \vec{D_{2s}} D2 =f1k ×(VgsVgτ +Vg2Rn )=f1VgsVgn f1RVg2τ =D2n +D2s

在高空天气分析中

  • 切向加速度:等压线汇合,地转风产生正向加速度,因为地转偏差指向加速度的左侧,非地转风法向穿过等压线指向低压,反之同理
  • 法向加速度:槽区,运动加速度法向正向,地转偏差指向加速度的左侧,对应运动切向反向,非地转风与地转风反向,脊区,非地转风与地转风同向;槽前脊后,高空辐散,对应地面上升运动补偿,地面减压,槽后脊前,高空辐合,对应下沉运动,地面加压
    地转偏差

对流加速度表示的地转偏差,在大气垂直运动较强时考虑,将水平风场近似用地转风代入,同时代入热成风公式可得到
D 3 ⃗ = ω R f 2 p ∇ T \vec{D_3} = \frac{\omega R}{f^2p} \nabla T D3 =f2pωRT
当大气盛行上升运动, ω < 0 \omega<0 ω<0 偏差指向温度下降的方向

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值