三、气旋与反气旋
前言
本课程使用教材为《天气学原理和方法(第四版)》(气象出版社),文章根据课堂笔记和教材内容整理订正编写,文章内容如有错误,请指正。
系列文章链接如下:
大气运动基本特征
气团与锋
气旋与反气旋
天气形势与天气要素预报
大气环流
文章目录
基本概念
- 气旋:近地面低压中心,周边因为地球地转形成的气流涡旋,在北半球为逆时针旋转
- 反气旋:近地面高压中心,在北半球为顺时针旋转
尺度上,一般用最外围一条闭合等压线的直径长度表示,反气旋一般大于气旋,可以用梯度风解释
强度上,气旋和反气旋使用中心气压来描述
气旋分为无锋气旋和锋面气旋,前者又分为热带气旋、地方性气旋
反气旋按照地理位置分为极地反气旋、温带反气旋和副热带反气旋,按照热力结构分为冷性反气旋和暖性反气旋
涡度与涡度方程
涡度:度量空气块旋转程度和旋转方向的物理量
ζ
⃗
=
∇
×
V
⃗
\vec{\zeta} = \nabla \times \vec{V}
ζ=∇×V
大尺度下大气做准水平运动,因此对于涡度,主要研究它的垂直分量,即
ζ
=
∂
v
∂
x
−
∂
u
∂
y
\zeta = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}
ζ=∂x∂v−∂y∂u
代入地转风方程
V
⃗
=
g
f
k
⃗
×
∇
h
H
\vec{V} = \frac{g}{f} \vec{k} \times \nabla_h H
V=fgk×∇hH 可得到
ζ
=
g
f
∇
h
2
H
\zeta = \frac{g}{f} \nabla_h^2 H
ζ=fg∇h2H
不做特别说明,后文的涡度是指涡度的垂直分量
借助坐标变换和曲率的知识可得到,在自然坐标系下
ζ
=
V
R
S
−
∂
V
∂
n
\zeta = \frac{V}{R_S} - \frac{\partial V}{\partial n}
ζ=RSV−∂n∂V
其中第一项为曲率涡度
R
S
R_S
RS 为曲率半径,第二项为切变涡度
行星涡度,当气块在赤道上随着地球转动时
v
=
Ω
R
v = \Omega R
v=ΩR
ζ
=
V
R
S
−
∂
V
∂
n
=
Ω
+
Ω
\zeta = \frac{V}{R_S} - \frac{\partial V}{\partial n} = \Omega + \Omega
ζ=RSV−∂n∂V=Ω+Ω
在纬度为
ϕ
\phi
ϕ 的纬圈上,则
ζ
=
f
=
2
Ω
sin
ϕ
\zeta = f = 2\Omega \sin \phi
ζ=f=2Ωsinϕ
绝对涡度为行星涡度和个体相对涡度的和
ζ
a
=
ζ
+
2
Ω
sin
ϕ
\zeta_a = \zeta + 2\Omega \sin \phi
ζa=ζ+2Ωsinϕ
涡度方程(p坐标系下)(重要)
d
(
ζ
+
f
)
d
t
=
(
∂
ω
∂
y
∂
u
∂
p
−
∂
ω
∂
x
∂
v
∂
p
)
−
(
f
+
ζ
)
(
∂
u
∂
x
+
∂
v
∂
y
)
\frac{d(\zeta + f)}{dt} = \left(\frac{\partial \omega}{\partial y}\frac{\partial u}{\partial p} - \frac{\partial \omega}{\partial x}\frac{\partial v}{\partial p} \right) - (f + \zeta) \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)
dtd(ζ+f)=(∂y∂ω∂p∂u−∂x∂ω∂p∂v)−(f+ζ)(∂x∂u+∂y∂v)
对于局地涡度的变化,可以将上式按照局地变换和平流变化的规律展开
∂
ζ
∂
t
=
−
(
u
∂
ζ
∂
x
+
v
∂
ζ
∂
y
)
−
(
u
∂
f
∂
x
+
v
∂
f
∂
y
)
−
ω
∂
ζ
∂
p
+
(
∂
ω
∂
t
∂
u
∂
p
−
∂
ω
∂
x
∂
v
∂
p
)
−
(
f
+
ζ
)
(
∂
u
∂
x
+
∂
v
∂
y
)
\frac{\partial \zeta}{\partial t} = -\left(u \frac{\partial \zeta}{\partial x} + v\frac{\partial \zeta}{\partial y}\right) - \left(u\frac{\partial f}{\partial x} + v\frac{\partial f}{\partial y}\right) - \omega \frac{\partial \zeta}{\partial p} + \left(\frac{\partial \omega}{\partial t}\frac{\partial u}{\partial p} - \frac{\partial \omega}{\partial x}\frac{\partial v}{\partial p}\right) - (f+\zeta)\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)
∂t∂ζ=−(u∂x∂ζ+v∂y∂ζ)−(u∂x∂f+v∂y∂f)−ω∂p∂ζ+(∂t∂ω∂p∂u−∂x∂ω∂p∂v)−(f+ζ)(∂x∂u+∂y∂v)
局地涡度变化为正,表示气旋性环流增强,反气旋性环流减弱
推导思路:p坐标系下,大尺度运动方程,忽略垂直方向运动和摩擦力
d u d t = − g ∂ z ∂ x + f v \frac{du}{dt} = -g \frac{\partial z}{\partial x} +fv dtdu=−g∂x∂z+fv
d v d t = − g ∂ z ∂ y − f u \frac{dv}{dt} = -g \frac{\partial z}{\partial y} -fu dtdv=−g∂y∂z−fu
以上为 u , v u,v u,v 方向,将上式个体变化展开为局地变化和平流变化,对 u , v u,v u,v 方向的运动方程分别对 y , x y,x y,x 求偏导后相减,代入涡度表达式可得到涡度方程
涡度方程的物理意义分析
- 涡度倾侧项
建立如上简化模型,假设速度 u = 0 u = 0 u=0,速度 v v v 仅在垂直方向上变化,垂直速度 ω \omega ω 仅在 x x x 方向上变化,根据涡度矢量计算公式可得到涡度矢量的水平分量 ζ x = − ∂ v ∂ z = ρ g ∂ v ∂ p < 0 \zeta_x = -\frac{\partial v}{\partial z} = \rho g \frac{\partial v}{\partial p} < 0 ζx=−∂z∂v=ρg∂p∂v<0 即,沿着 x x x 轴的负方向
垂直速度 ω \omega ω 沿着 x x x 方向增大,使得原有水平涡度将发生倾侧,在公式上体现为 − ∂ ω ∂ x ∂ v ∂ y > 0 - \frac{\partial \omega}{\partial x}\frac{\partial v}{\partial y}>0 −∂x∂ω∂y∂v>0 垂直涡度增加
- 涡度*速度散度项
可以分为两项
- 相对涡度散度项 − ζ ( ∂ u ∂ x + ∂ v ∂ y ) -\zeta \left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right) −ζ(∂x∂u+∂y∂v)
- 行星涡度散度项 − f ( ∂ u ∂ x + ∂ v ∂ y ) -f \left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right) −f(∂x∂u+∂y∂v)
流场水平辐合(散度小于零),不论气旋反气旋相对涡度项的绝对值都会增加(即有利于它们的发展),反之都会减弱
地形对天气系统的影响:气旋和反气旋运动过程中质量守恒,气旋反气旋下山,气柱长度增加,气柱辐合,强度增强,上山同理
在北半球( f > 0 f>0 f>0 ),流场水平辐合,涡度增大,反之减小
局地涡度方程物理意义
-
相对涡度平流
低压槽处相对涡度最大,在槽前脊后,沿着空气运动的方向,相对涡度减小,即 ∂ ζ ∂ x < 0 , u > 0 ⟹ − ( u ∂ ζ ∂ x ) > 0 \frac{\partial \zeta}{\partial x} < 0, u > 0 \Longrightarrow -(u\frac{\partial \zeta}{\partial x}) > 0 ∂x∂ζ<0,u>0⟹−(u∂x∂ζ)>0 有正的相对涡度平流,槽后脊前相反 -
行星涡度平流
同一纬度上行星涡度不会发生改变,当风向为南北方向,会产生行星涡度平流,若风向为南风 ∂ f ∂ y > 0 , v > 0 ⟹ ∂ ζ ∂ t < 0 \frac{\partial f}{\partial y} > 0, v > 0 \Longrightarrow \frac{\partial \zeta}{\partial t} < 0 ∂y∂f>0,v>0⟹∂t∂ζ<0 涡度减小,北风涡度会增大
综合分析两者
对于图中槽后脊前,相对涡度平流小于0,行星涡度平流大于0,两者发生抗衡,两者之和决定涡度平流的大小,决定波(槽脊系统)的运动方向,槽前脊后同理
长波和短波,相对涡度平流与行星涡度平流的贡献不同,使得波的移动方向不同,一般来说短波系统,槽脊系统曲率更大,相对涡度贡献更大(比行星涡度大多个数量级),波向东运动,但长波系统,相对涡度变小了,波向西运动
涡度方程简化
使用尺度分析方法,分析不同项的数量级,对涡度方程进行简化,常用的简化方程
d
(
f
+
ζ
)
d
t
≈
−
f
(
∂
u
∂
x
+
∂
v
∂
y
)
\frac{d(f+\zeta)}{dt} \approx -f (\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y})
dtd(f+ζ)≈−f(∂x∂u+∂y∂v)
当无辐散时,为绝对涡度守恒,该守恒可以说明为何西风带不是平直气流而是波状运动
Rossby位势涡度守恒
d
h
d
t
(
ζ
g
+
f
h
)
=
0
\frac{d_h}{dt}(\frac{\zeta_g + f}{h}) = 0
dtdh(hζg+f)=0
其中
h
h
h 为气柱的有效厚度,可以用该方程解释地形对气旋反气旋的影响,上山或下山时强度的变化
位势倾向方程
该方程是由涡度方程的另一种形式,其优越性在于方程右端没有散度项,不需要测风资料,以下进行推导
对于简化的涡度方程,进行局地展开
代入连续方程,消去散度项
∂
ζ
∂
t
+
V
⃗
⋅
∇
(
f
+
ζ
)
=
f
∂
ω
∂
p
\frac{\partial \zeta}{\partial t} +\vec{V} \cdot \nabla (f+\zeta) = f \frac{\partial \omega}{\partial p}
∂t∂ζ+V⋅∇(f+ζ)=f∂p∂ω
假设大气准地转,引入地转风公式,可以引入位势,方程两边同乘
f
f
f
∇
2
∂
ϕ
∂
t
+
f
V
⃗
⋅
∇
(
f
+
ζ
)
=
f
2
∂
ω
∂
p
(1)
\nabla ^2 \frac{\partial \phi}{\partial t} + f\vec{V} \cdot \nabla (f+\zeta) = f^2 \frac{\partial \omega}{\partial p} \tag{1}
∇2∂t∂ϕ+fV⋅∇(f+ζ)=f2∂p∂ω(1)
代入位温形式热流量方程
1
θ
(
∂
θ
∂
t
+
V
⃗
⋅
∇
θ
+
ω
∂
θ
∂
p
)
=
1
c
p
T
d
Q
d
t
\frac{1}{\theta} (\frac{\partial \theta}{\partial t} +\vec{V} \cdot \nabla \theta + \omega \frac{\partial \theta}{\partial p}) = \frac{1}{c_pT}\frac{dQ}{dt}
θ1(∂t∂θ+V⋅∇θ+ω∂p∂θ)=cpT1dtdQ
等压面上位温方程
θ
=
T
(
1000
p
)
R
d
/
C
p
\theta = T(\frac{1000}{p})^{R_d/C_p}
θ=T(p1000)Rd/Cp 进行取对数和对时间求导得到
1
θ
∂
θ
∂
t
=
1
T
∂
T
∂
t
\frac{1}{\theta}\frac{\partial \theta}{\partial t} = \frac{1}{T} \frac{\partial T}{\partial t}
θ1∂t∂θ=T1∂t∂T
右式代入理想气体状态方程
p
=
ρ
R
T
=
R
T
α
p = \rho RT = \frac{RT}{\alpha}
p=ρRT=αRT
1
θ
∂
θ
∂
t
=
1
α
∂
α
∂
t
\frac{1}{\theta}\frac{\partial \theta}{\partial t} = \frac{1}{\alpha} \frac{\partial \alpha}{\partial t}
θ1∂t∂θ=α1∂t∂α
对空间水平方向求梯度同理
1
θ
∇
θ
=
1
α
∇
α
\frac{1}{\theta} \nabla \theta = \frac{1}{\alpha} \nabla \alpha
θ1∇θ=α1∇α
代入热流量方程并两边同乘
α
\alpha
α
∂
α
∂
t
+
V
⃗
⋅
∇
α
=
R
C
p
p
d
Q
d
t
+
σ
ω
\frac{\partial \alpha}{\partial t} + \vec{V} \cdot \nabla \alpha = \frac{R}{C_pp} \frac{dQ}{dt} +\sigma \omega
∂t∂α+V⋅∇α=CppRdtdQ+σω
其中
σ
=
−
α
θ
∂
θ
∂
p
\sigma = -\frac{\alpha}{\theta} \frac{\partial \theta}{\partial p}
σ=−θα∂p∂θ 为大气稳定度
在稳定大气中,代入静力平衡方程
∂
ϕ
∂
p
=
−
α
\frac{\partial \phi}{\partial p} = -\alpha
∂p∂ϕ=−α
∂
∂
p
∂
ϕ
∂
t
+
V
⃗
⋅
∇
∂
ϕ
∂
p
=
−
R
c
p
p
d
Q
d
t
−
σ
ω
\frac{\partial }{\partial p}\frac{\partial \phi}{\partial t} +\vec{V} \cdot \nabla \frac{\partial \phi}{\partial p} = -\frac{R}{c_pp} \frac{dQ}{dt} -\sigma \omega
∂p∂∂t∂ϕ+V⋅∇∂p∂ϕ=−cppRdtdQ−σω
对
p
p
p 求偏导数并乘
f
2
/
σ
f^2/\sigma
f2/σ ,和
(
1
)
(1)
(1) 式相加,消除
∂
ω
∂
p
\frac{\partial \omega}{\partial p}
∂p∂ω
最终得到位势倾向方程完整表达式(重要)
(
∇
2
+
f
2
σ
∂
2
∂
p
2
)
∂
ϕ
∂
t
=
−
f
V
⃗
⋅
∇
(
f
+
ζ
)
+
f
2
σ
∂
∂
p
(
−
V
⃗
⋅
∇
∂
ϕ
∂
p
)
−
f
2
R
c
p
p
σ
∂
∂
p
d
Q
d
t
(\nabla^2 + \frac{f^2}{\sigma}\frac{\partial ^2}{\partial p^2}) \frac{\partial \phi}{\partial t} = -f\vec{V} \cdot \nabla (f+ \zeta) + \frac{f^2}{\sigma} \frac{\partial }{\partial p}(-\vec{V} \cdot \nabla \frac{\partial \phi}{\partial p}) - \frac{f^2R}{c_p p \sigma}\frac{\partial }{\partial p} \frac{dQ}{dt}
(∇2+σf2∂p2∂2)∂t∂ϕ=−fV⋅∇(f+ζ)+σf2∂p∂(−V⋅∇∂p∂ϕ)−cppσf2R∂p∂dtdQ
左端为位势倾向在整个空间的Laplace项
右端第一项为地转风的绝对涡度平流,第二项为温度平流随高度的变化,第三项为非绝热加热随高度的变化
以上推导运用了涡度方程、地转风公式、连续方程、热流量方程、位温方程、静力平衡方程
位势倾向方程物理意义
假设条件:把实际大气理想化,位势随时间的变化是正负相间出现的正弦波动
∂
ϕ
∂
t
=
(
∂
ϕ
∂
t
)
a
sin
k
x
sin
l
y
sin
m
p
\frac{\partial \phi}{\partial t} = (\frac{\partial \phi}{\partial t})_a\sin kx \sin ly \sin mp
∂t∂ϕ=(∂t∂ϕ)asinkxsinlysinmp
∇
2
∂
ϕ
∂
t
=
−
(
k
2
+
l
2
)
∂
ϕ
∂
t
∝
−
∂
ϕ
∂
t
\nabla ^2 \frac{\partial \phi}{\partial t} = -(k^2 + l^2) \frac{\partial \phi}{\partial t} \propto -\frac{\partial \phi}{\partial t}
∇2∂t∂ϕ=−(k2+l2)∂t∂ϕ∝−∂t∂ϕ
对其求二阶导可得到方程左端与
−
∂
ϕ
∂
t
-\frac{\partial \phi}{\partial t}
−∂t∂ϕ 正比
- 右端第一项:绝对涡度平流项(动力因子)
地转风绝对涡度平流分为行星涡度平流和相对涡度平流,数学分析方法与涡度方程同理,需要分别在长波和短波两种情况考虑两者的数量级
物理解释:对于短波系统( λ < 3000 k m \lambda < 3000 km λ<3000km ),槽前脊后,有正涡度平流(西南风将正相对涡度由大到小输送),气流运动过程中受到水平地转偏向力影响,气流辐散,引起气柱质量减少,气柱低层辐合上升,形成负变压中心,上升过程绝热膨胀冷却,气柱体积收缩,等压面厚度减小,高层等压面降低(若低层等压面没有较大变化) ∂ ϕ ∂ t < 0 \frac{\partial \phi}{\partial t} < 0 ∂t∂ϕ<0 ,槽后脊前分析同理
综上,涡度平流可以使槽脊系统移动,但不会使得槽脊系统发展,会使得地面高低压中心发展
- 右端第二项:温度(厚度)平流随高度变化项(热力因子)
∂
ϕ
∂
p
=
g
∂
z
−
ρ
g
∂
z
=
−
1
ρ
=
−
R
T
p
\frac{\partial \phi}{\partial p} = \frac{g\partial z}{-\rho g \partial z} = - \frac{1}{\rho} = - \frac{RT}{p}
∂p∂ϕ=−ρg∂zg∂z=−ρ1=−pRT
计算可得到
−
∂
ϕ
∂
t
∝
∂
∂
z
(
−
V
⃗
⋅
∇
T
)
-\frac{\partial \phi}{\partial t} \propto \frac{\partial }{\partial z} (- \vec{V} \cdot \nabla T)
−∂t∂ϕ∝∂z∂(−V⋅∇T)
物理解释:对流层大气中,温度平流大小随高度一般是递减的,若某等压面下方暖平流强,上方暖平流弱,则等压面下气柱膨胀,若近地面等压面没有较大变化,则高层等压面上升。冷平流同理
当温度槽落后于低压槽时,低压槽内发生冷平流,由于冷平流大小随高度递减,因此冷平流出现会使得槽加深
综上,温度平流可以使得槽脊系统强度变化,其间接作用可以使槽脊移动(槽脊之间的涡度梯度加强了,槽脊之间的涡度平流加强了)
- 右端第三项:非绝热加热项
−
∂
ϕ
∂
t
∝
∂
∂
z
d
Q
d
t
-\frac{\partial \phi}{\partial t} \propto \frac{\partial }{\partial z} \frac{dQ}{dt}
−∂t∂ϕ∝∂z∂dtdQ
非绝热加热随高度增加,等压面高度下降,反之上升
物理解释:若某等压面上方非绝热加热强,下方弱,则上方气柱膨胀,等压面高度降低,该等压面附近气流开始出现辐合,等压面下方产生下沉气流,导致地面气流辐散并形成正变压中心
对于含有降水的低压,水汽上升凝结会释放潜热,需要考虑非绝热加热项,使得高空等压面上升,空气辐散,地面辐合上升更加强烈,地面低压加强
ω \omega ω 方程
( σ ∇ 2 + f 2 ∂ 2 ∂ p 2 ) ω = f ∂ ∂ p [ V ⃗ ⋅ ∇ ( f + ζ g ) ] − ∇ 2 [ V ⃗ ⋅ ∇ ∂ ϕ ∂ p ] − R c p p ∇ 2 d Q d t (\sigma \nabla^2 + f^2 \frac{\partial ^2}{\partial p^2})\omega = f \frac{\partial }{\partial p}[\vec{V} \cdot \nabla (f + \zeta_g)] - \nabla ^2 [\vec{V} \cdot \nabla \frac{\partial \phi}{\partial p}] - \frac{R}{c_pp} \nabla^2 \frac{dQ}{dt} (σ∇2+f2∂p2∂2)ω=f∂p∂[V⋅∇(f+ζg)]−∇2[V⋅∇∂p∂ϕ]−cppR∇2dtdQ
推导方法类似,将两个方程相加得到方程
− ∇ 2 ∂ α ∂ p + f ∂ ∂ p [ V ⃗ ⋅ ∇ ( f + ζ ) ] = f 2 ∂ 2 ω ∂ p 2 -\nabla ^2 \frac{\partial \alpha}{\partial p} + f \frac{\partial }{\partial p}[\vec{V} \cdot \nabla (f+ \zeta)] = f^2 \frac{\partial ^2 \omega}{\partial p^2} −∇2∂p∂α+f∂p∂[V⋅∇(f+ζ)]=f2∂p2∂2ω
∇ 2 ∂ α ∂ t + ∇ 2 ( V ⃗ ⋅ ∇ α ) = R c p p ∇ 2 d Q d t + ∇ 2 σ ω \nabla ^2 \frac{\partial \alpha}{\partial t} + \nabla^2 (\vec{V} \cdot \nabla \alpha) = \frac{R}{c_pp} \nabla ^2 \frac{dQ}{dt} + \nabla^2 \sigma \omega ∇2∂t∂α+∇2(V⋅∇α)=cppR∇2dtdQ+∇2σω
其中第一个方程涡度方程变式,第二个为热流量方程变式,联系位势倾向方程推导
方程物理意义
假设条件:设垂直速度
ω
\omega
ω 的变化是正弦波动
ω
=
ω
a
sin
k
x
sin
l
y
sin
m
p
\omega = \omega_a \sin kx \sin ly \sin mp
ω=ωasinkxsinlysinmp
可以得到
(
σ
∇
2
+
f
2
∂
2
∂
p
2
)
ω
∝
−
ω
(\sigma \nabla ^2 + f^2 \frac{\partial ^2 }{\partial p^2})\omega \propto -\omega
(σ∇2+f2∂p2∂2)ω∝−ω
- 右端第一项:绝对涡度平流随高度变化项
物理解释:在中纬度地区,高低压系统中心涡度平流总是随高度增加,地面低压中心1000hpa正涡度平流很小,地面低压上空500hpa为低压槽前,正涡度平流大,正涡度相对涡度平流随高度增加,在地转偏向力作用下,高空有明显辐散,为了使得气柱质量守恒,需要地面气流辐合上升补充,即风压场的适应过程
- 右端第二项:温度平流的Laplace项
− ∇ 2 [ V ⃗ ⋅ ∇ ( ∂ ϕ ∂ p ) ] ∝ − R p V ⃗ ⋅ ∇ T -\nabla ^2 [\vec{V} \cdot \nabla (\frac{\partial \phi}{\partial p})] \propto -\frac{R}{p} \vec{V} \cdot \nabla T −∇2[V⋅∇(∂p∂ϕ)]∝−pRV⋅∇T
物理解释:暖平流使得高空等压面(500hpa)以下空气厚度增加,等压面升高,在气压梯度力影响下(也可用反气旋式涡度增加来解释),高空产生水平辐散,为了使得气柱质量守恒,地面气流辐合上升,形成上升气流
- 右端第三项:非绝热加热项的Laplace项
− ∇ 2 d Q d t ∝ d Q d t -\nabla ^2 \frac{dQ}{dt} \propto \frac{dQ}{dt} −∇2dtdQ∝dtdQ
物理解释:非绝热加热地带,高层等压面上升,空气辐散,使得地面向上有上升运动,前面已经提到,当低压系统含有水汽凝结过程,水汽凝结释放潜热,会使得低压加强,上升运动更加强烈
温带气旋和反气旋
Bjerknes,气象学挪威学派的创始人,早期温带气旋模式由J.Bjerknes 提出
温带气旋的生命史
温带气旋的发展分为四个阶段
- 波动阶段
设高纬度为东风,低纬度为西风,且高纬度冷,低纬度暖,波动开始之前,两者之间有一个静止锋。
受到一定扰动后(高空槽前正涡度平流等因素),开始冷暖空气之间出现波动,暖空气向北扩展,冷空气向南侵袭,形成锋面气旋,中心气压开始略低
- 成熟阶段
高空槽加深,温度槽落后于高度槽,但距离有所接近。地面波动振幅增加,锋面进一步发展,气旋中心气压更低
- 锢囚阶段
冷锋追上暖锋,暖空气被抬升至高空,近地面气旋逐渐发展为冷性涡旋,中心气压比周围低20hpa以上,基本为气旋生命史上最低,移动速度减慢。
高空天气图上可以看见暖舌。同时高空槽进一步发展,高空等高线出现闭合形成低压中心,涡度平流减少,地面气旋将无法发展。温度槽落后程度降低,等温线与等高线夹角减小,冷暖平流减弱。
- 衰亡阶段
气旋与锋面脱离,成为冷涡旋,并在地面摩擦力作用下逐渐填塞消亡
温带气旋的发展因素
结合前面的两个方程的物理意义,温带气旋在锋区上发展而来,由很大的斜压性
- 动力因子
高空形势:温度场落后于高度场
可以用前面位势倾向方程的第一项的物理意义解释,高空槽前正涡度平流会使得地面气旋发展,但不会使得地面气旋移动
- 热力因子
可以用位势倾向方程的第二项的物理意义解释,高空低压槽下有冷平流,高空槽加深,气流辐合,导致地面加压辐散,气柱内盛行下沉气流,高空高压脊同理分析。由此可见,地面气旋后反气旋前有下沉气流,气旋前反气旋后又上升气流,直接作用会使得地面气旋反气旋系统移动
热力因子会带来间接作用,热力因子使得槽脊处等高线曲率增加,导致槽脊之间的涡度平流增大,可以促使地面系统进一步发展。
- 非绝热加热因子
对于气旋的发展,上升气流中伴随这水汽凝结释放潜热,使得气柱降温不会太快,高层等压面下降不会太快,维持气流辐散,使得地面气旋更快发展
气旋再生与气旋族
气旋再生:趋于消亡的气旋在一定条件下又重新发展起来的过程
气旋再生的过程
- 副冷锋的加入
气旋后部偏北气流带来高纬度的更冷的冷空气,与气旋南下后附近的变暖的冷空气形成温度对比,即形成新的冷锋,又称副冷锋,副冷锋进入后,气旋会发展
- 气旋入海后加强
海洋上摩擦力小,秋冬季海洋温度比陆地高,海洋上有一定程度的非绝热加热
- 锢囚气旋合并加强
第一个锢囚气旋发展更成熟,移动速度更慢,第二个锢囚气旋移动速度更快,第二个追上第一个,合并加强
气旋族
在同一锋系上同时出现的几个不同发展阶段的气旋序列,气旋之间锋面“手拉手”(冷锋与另一个气旋的暖锋相连)
热低压——温带无锋气旋
一种无锋气旋,由于近地面加热,一般只出现在700 hpa 以下,3-4km就不明显的浅薄的暖低压系统,通常可以分为地方性热低压和锋前热低压
地面附近空气受到辐射加热膨胀,高空等压面升高,形成暖高压(可以用前面的静力平衡方程解释),高空辐散使得气柱内气流向上补充,近地面形成低压,出现辐合气流
东亚气旋与反气旋实例分析
- 北方气旋:北纬40-55度,东经70-140度
以中国黑龙江、吉林、内蒙古交界地区附近产生最多,常见的有蒙古气旋、黄河气旋、黄海气旋等,本质都是锋面气旋
- 南方气旋:北纬25-35度,东经70-140度
我国江淮流域、东海和日本南部生成最多,常见的有江淮气旋、东海气旋等,本质仍为锋面气旋
东亚气旋移动路径
路径分布主要分为三个地带:最多在日本东方、东南方洋面上,其次是我国东北地区,第三个是朝鲜、日本北部地带
蒙古气旋
形成过程:蒙古中东部,地形作用形成的背风坡低压(可以使用Rossby位势涡度方程解释),后续形成过程可分为三类
高空形势:疏散槽,槽会加深,槽前有暖平流,槽后冷平流,槽前有正涡度平流,有利于地面低压发展
地面形势:山脉背风坡或较暖的下垫面,有热低压或暖性倒槽生成,冷锋翻过山脉进入该低压或倒槽,具体分类如下
- 暖区新生类:中亚或西西伯利亚形成的温带锋面气旋,气旋上的冷锋受到蒙古山脉的阻挡,冷锋前背风坡暖区,形成局地的热低压,当锋面气旋经过山脉,冷锋翻过山进入该热低压,同时对应高空槽前有暖平流,使得地面暖锋锋生,最终形成新的锋面气旋
- 冷锋进入倒槽内:山脉背风坡下垫面较暖,形成暖性倒槽,冷空气进入倒槽,形成冷锋,高空槽前暖平流,形成暖锋,最终形成锋面气旋
- 蒙古副气旋类:冷空气到达蒙古山脉减慢,北部冷空气形成新的锋面气旋,南部两股冷空气嵌形作用形成低压,冷锋进入低压,高空槽前暖平流,形成暖锋,最终形成南部的锋面气旋,并与北部的气旋连接形成气旋族
天气:大风、降温、降水少(倒槽型后方盛行东南风,从渤海带来水汽,可能产生的降水较多)
江淮气旋
形成过程:可以分为两类
高空形势:槽前正涡度平流,温度槽落后于高度槽(槽前暖平流,槽后冷平流)
地面形势:江淮流域附近有近似东西走向准静止锋,具体分类如下
- 静止锋波动类:与一般的气旋形成过程类似
- 倒槽锋生类:高空西风急流经过青藏高原南北绕流,西南南支槽前将西南暖湿气流输送,使得地面减压,地面上有倒槽形成,暖式风切变导致暖锋锋生,与此同时,北支槽输送冷空气并在槽前地面形成冷锋,北支槽南下,冷锋进入地面倒槽,同时南支槽与北支槽合并形成更大的高空槽,槽前地面气旋显著发展,江淮气旋形成
天气:强降水,大风,气旋东部靠海形成平流雾
爆发性气旋
中高纬度(主要是北纬60度)气旋发展速度达到24时中心气压下降24hpa,带来强降温和风雪,东亚多形成于日本以东的太平洋上
冬春季,环流偏南,高空西风急流经过青藏高原分为南北两支气流,两者汇合于东亚沿岸或日本上空,北支槽发展较快且较深,南支槽发展慢且较浅,两者位相不同,往往最终北支槽与南支脊在日本上空同一经度,气压梯度力大,形成典型的东亚急流,如图所示
高空急流出口区左侧和入口区右侧,为正涡度平流区,根据位势倾向方程,该区域有利于地面气旋形成
日本以东的西北太平洋为高空西风急流出口区的左侧,更容易形成爆发性气旋,少部分会形成于高空西风急流入口处的右侧
举例分析:以下为1987年1月2日的500hpa和850hpa等压面上的流线图和风速图
500hpa:
850hpa:
气旋西北侧有较强的冷空气入侵,与日本附近的暖洋面的暖空气和偏南低空急流相遇,产生上升运动,伴随积云潜热,气旋进一步发展(非绝热加热项)
综上,影响因素为:槽前涡度平流、温度平流、非绝热加热、海气交换、与急流有关的地转偏差