前言
本课程使用教材为《动力气象学》(气象出版社)文章根据课堂笔记和教材内容整理订正编写,文章内容如有错误,请指正。
动力气象与天气学原理不割裂,动力气象在天气学原理的基础上,增加了更多数学物理计算和推导的过程,本章部分内容在《天气学原理》已有涉及,可以与关于天原的文章结合分析。
关于热成风、p坐标系、地转风、地转偏差的内容详见:
天气学原理-大气运动基本特征
文章目录
动力气象学研究问题基本假设
- 连续介质假设:不考虑大气的分子结构,大气是连续流体
- 理想气体假设和可压缩性质: 大气是理想气体(没有凝结),是可压缩的(散度不等于0)
研究对象及其性质
中高纬度多尺度的大气运动,目前动力气象主要理论集中在大尺度运动(天气尺度 Synoptic scale)的大气
大尺度大气的运动特征:准定常、准水平、准静态、准地转、无辐散
- 考虑地球自转,即地转偏向力,大气准地转
- 考虑地球重力作用,大气垂直运动速度很小,大气准水平运动,同时大气重力与垂直气压梯度力近似平衡,即准静力平衡
- 大气是层结流体,大气密度随高度变化,层结分为稳定与不稳定层结
- 大气中含有水分,对流凝结会释放潜热
- 大气下边界不均匀,海陆地形分布影响大气,同时边界层大气运动具有湍流性
大气运动基本方程组
定义一些地球基本常数
Ω
=
7.292
×
1
0
−
5
s
−
1
r
=
6.371
×
1
0
6
m
p
=
1.01
×
1
0
5
p
a
.
.
.
\begin{align*} \Omega = 7.292 \times 10 ^{-5} s^{-1} \tag{地转角速度} \\ r = 6.371 \times 10 ^6 m \tag{地球半径} \\ p = 1.01 \times 10 ^5 pa \tag{标准大气压} \\ ... \\ \end{align*}
Ω=7.292×10−5s−1r=6.371×106mp=1.01×105pa...(地转角速度)(地球半径)(标准大气压)
任意矢量对时间的导数
矢量求导,定义 A ⃗ \vec{A} A 为任意矢量
d a A ⃗ d t = d A d t i ⃗ + d A d t j ⃗ + d A d t k ⃗ + A x d a i ⃗ d t + A y d a j ⃗ d t + A z d a k ⃗ d t \frac{d_a \vec{A}}{dt} = \frac{dA}{dt} \vec{i} + \frac{dA}{dt} \vec{j} + \frac{dA}{dt} \vec{k}+ A_x \frac{d_a \vec{i}}{dt} + A_y \frac{d_a \vec{j}}{dt} + A_z \frac{d_a \vec{k}}{dt} dtdaA=dtdAi+dtdAj+dtdAk+Axdtdai+Aydtdaj+Azdtdak
画图推导,容易得到
d a i ⃗ d t = Ω ⃗ × i ⃗ \frac{d_a\vec{i}}{dt} = \vec{\Omega} \times \vec{i} dtdai=Ω×i
其中 Ω ⃗ \vec{\Omega} Ω 为地球旋转角速度,其他方向同理
可得到
d a A ⃗ d t = d A ⃗ d t + Ω ⃗ × A ⃗ \frac{d_a \vec{A}}{dt} = \frac{d\vec{A}}{dt} + \vec{\Omega} \times \vec{A} dtdaA=dtdA+Ω×A
可以视为两个坐标系矢量对时间求导的转换算子
借助此算子可以计算速度和加速度公式
d a V a ⃗ d t = d V ⃗ d t + 2 Ω ⃗ × V ⃗ + Ω ⃗ × ( Ω ⃗ × R ⃗ ) \frac{d_a \vec{V_a}}{dt} = \frac{d\vec{V}}{dt} + 2 \vec{\Omega} \times \vec{V} + \vec{\Omega} \times (\vec{\Omega} \times \vec{R}) dtdaVa=dtdV+2Ω×V+Ω×(Ω×R)
绝对加速度 = 相对加速度 + 科氏加速度 + 向心加速度
运动方程
将上述加速度公式代入到牛顿第二定律可得到
d V ⃗ d t = ∑ F ⃗ + Ω 2 R ⃗ − 2 Ω ⃗ × V ⃗ \frac{d\vec{V}}{dt} = \sum \vec{F} + \Omega^2 \vec{R} - 2 \vec{\Omega } \times \vec{V} dtdV=∑F+Ω2R−2Ω×V
相对加速度 = 真实力 + 惯性离心力 + 地转偏向力
真实力:质量力(万有引力)与表面力(气压梯度力、摩擦力)
∑ F ⃗ = − G M r 2 r ⃗ r − 1 ρ ∇ p + F f ⃗ \sum \vec{F} = - \frac{GM}{r^2} \frac{\vec{r}}{r} - \frac{1}{\rho} \nabla p + \vec{F_f} ∑F=−r2GMrr−ρ1∇p+Ff
非真实力:惯性离心力、地转偏向力、重力(万有引力与惯性离心力的合力)
最终合并得到基本的矢量表达的运动方程
d
V
⃗
d
t
=
−
1
ρ
∇
p
−
2
Ω
⃗
×
V
⃗
+
g
⃗
+
F
f
⃗
\frac{d\vec{V}}{dt} = -\frac{1}{\rho} \nabla p - 2 \vec{\Omega} \times \vec{V} + \vec{g} + \vec{F_f}
dtdV=−ρ1∇p−2Ω×V+g+Ff
右式后四项分别为气压梯度力项、地转偏向力项、重力项和摩擦力项。
质量守恒与连续方程
Lagrange观点方程
d ρ d t + ρ ∇ ⋅ V ⃗ = 0 \frac{d\rho}{dt} + \rho \nabla \cdot \vec{V} = 0 dtdρ+ρ∇⋅V=0
Eular 观点方程
∂ ρ ∂ t + ∇ ⋅ ( ρ V ⃗ ) = 0 \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{V}) = 0 ∂t∂ρ+∇⋅(ρV)=0
其中 ∇ ⋅ V ⃗ \nabla \cdot \vec{V} ∇⋅V 为速度散度,对应单位体积体胀速度,即某一气块膨胀和收缩的程度;
∇ ⋅ ρ V ⃗ \nabla \cdot \rho \vec{V} ∇⋅ρV 为质量散度,对应单位体积流体质量通量,即某一空间内流体质量流入流出之间的差异。
热力学能量方程与状态方程
干空气状态方程,动力气象学一般研究干空气,不考虑水汽
p = ρ R T ⟺ α p = R T p = \rho R T \Longleftrightarrow \alpha p = RT p=ρRT⟺αp=RT
其中 α = 1 ρ \alpha = \frac{1}{\rho} α=ρ1 为比容
根据热力学第一定律,得到热力学能量方程
c v d T d t + p d α d t = d Q d t c_v \frac{dT}{dt} + p \frac{d\alpha}{dt} = \frac{dQ}{dt} cvdtdT+pdtdα=dtdQ
其中 c v = 718 J / ( k g ⋅ K ) c_v = 718 J/(kg \cdot K) cv=718J/(kg⋅K) 为干空气定容比热
气块吸收热量,内能增加并且对外做功
状态方程对时间求导,代入上述热力学能量方程,可得到热力学能量方程的另一种表达方式
c p d T d t + R d p d t = d Q d t c_p \frac{dT}{dt} + R \frac{dp}{dt} = \frac{dQ}{dt} cpdtdT+Rdtdp=dtdQ
其中 c p = 1005 J / ( k g ⋅ K ) c_p = 1005 J/(kg \cdot K) cp=1005J/(kg⋅K) 为干空气定压比热
位温及其表示的热力学方程
大气干绝热过程与泊松方程
T
0
T
=
(
p
0
p
)
R
/
c
p
\frac{T_0}{T}= (\frac{p_0}{p}) ^{R/c_p}
TT0=(pp0)R/cp
气块干绝热过程温度递减率
γ
d
=
−
d
T
d
z
≈
9.8
K
/
k
m
\gamma_d = - \frac{dT}{dz} \approx 9.8 K/km
γd=−dzdT≈9.8K/km
环境温度递减率,对流层平均而言温度递减率大约6.5K/km
γ
=
−
∂
T
∂
z
≈
6.5
K
/
k
m
\gamma = - \frac{\partial T}{\partial z} \approx 6.5 K/km
γ=−∂z∂T≈6.5K/km
位温:气压为
p
p
p,温度为
T
T
T 的气块绝热移动到海平面
p
s
=
1000
h
p
a
p_s = 1000hpa
ps=1000hpa 时对应的温度
θ
=
T
(
p
s
p
)
R
/
c
p
\theta = T (\frac{p_s}{p}) ^{R/c_p}
θ=T(pps)R/cp
取对数,对时间求导,可以得到热力学能量方程,也可以证明干绝热过程中位温守恒
d ln θ d t = 1 c p T d Q d t \frac{d\ln \theta}{dt} = \frac{1}{c_p T} \frac{dQ}{dt} dtdlnθ=cpT1dtdQ
运动方程、连续方程、状态方程、热力学能量方程联立称为大气运动方程组。
尺度分析
尺度:反映物理量的量值,例如速度
u
u
u
u
=
U
u
∗
u = Uu^*
u=Uu∗
其中 U U U 为特征值有量纲, u ∗ u^* u∗ 为无量纲量
动力学尺度
动力学尺度主要可以分为空间尺度、时间尺度和运动尺度
空间尺度分为水平尺度 L L L 和垂直厚度尺度 D D D
运动尺度分为水平速度尺度 (特征值为 U U U ) 和垂直速度尺度(特征值为 W W W ),观测表明,速度场的时空变动尺度可以达到本身的量级
时间尺度:系统演变经历一个阶段所需要的特征时间,对于大尺度系统 τ = L / U \tau = L/U τ=L/U,对于中小尺度系统 τ > L / U \tau > L/U τ>L/U
大气运动各个尺度特征值如下:
| 运动类型 | L ( m ) L(m) L(m) | D ( m ) D(m) D(m) | U ( m / s ) U(m/s) U(m/s) | τ ( s ) \tau(s) τ(s) |
|---|---|---|---|---|
| 大尺度 | 1 0 6 10^6 106 | 1 0 4 10^4 104 | 10 10 10 | 1 0 5 10^5 105 |
| 中尺度 | 1 0 5 10^5 105 | 1 0 4 10^4 104 | 10 10 10 | 1 0 5 10^5 105 |
| 小尺度 | 1 0 4 10^4 104 | 1 0 3 ∼ 1 0 4 10^3 \sim 10^4 103∼104 | 10 10 10 | 1 0 4 10^4 104 |
热力学尺度
热力学变量:包括气压、密度、位温、温度等,热力学变量分解为表征其基本状态的基本热力学变量(仅与 z z z 有关)和扰动量
p = p ( z ) ˉ + p ′ ( x , y , z , t ) ∼ P + Δ P p = \bar{p(z)} + p'(x,y,z,t) \sim P+\Delta P p=p(z)ˉ+p′(x,y,z,t)∼P+ΔP
由于其时空变动值相对于其本身很小,扰动量远小于其本身的量级,即 Δ p p < < 1 \frac{\Delta p}{p} << 1 pΔp<<1
基本态的垂直厚度尺度(标高): H = R T ∗ / g ∼ 1 0 4 m H = RT^*/g \sim 10 ^4 m H=RT∗/g∼104m,一般是指随着高度增加,气压减少为起始高度气压的 1 / e 1/e 1/e 时对应的高度,注意,它隶属于热力学变量的尺度,不同于空间尺度中的垂直厚度尺度 D D D,并且 D ≤ H D \le H D≤H
热力学基本变量随高度的变化可以达到其本身的量级
d p ˉ d z = − ρ ˉ g ∼ π g ∼ P H \frac{d\bar{p}}{dz} = - \bar{\rho}g \sim \pi g \sim \frac{P}{H} dzdpˉ=−ρˉg∼πg∼HP
其中 π \pi π 为密度 ρ \rho ρ 的特征值
扰动热力学变量的时空变动值可以达到扰动量本身的量级,例如对于气压
∂ p ∂ x = ∂ p ′ ∂ x ∼ Δ P L \frac{\partial p}{\partial x} = \frac{\partial p'}{\partial x} \sim \frac{\Delta P}{L} ∂x∂p=∂x∂p′∼LΔP
水平运动方程尺度分析
将水平运动方程展开到两个方向,并忽略摩擦力,气压梯度力中的密度项可以如下化简(Taylor展开法)
− 1 ρ = − 1 ρ ˉ + ρ ′ ≈ − 1 ρ ˉ ( 1 − ρ ′ ρ ˉ ) ⟹ − 1 ρ ∼ 1 ρ ˉ -\frac{1}{\rho} = -\frac{1}{\bar{\rho} + \rho'} \approx -\frac{1}{\bar{\rho}} (1 - \frac{\rho'}{\bar{\rho}}) \Longrightarrow -\frac{1}{\rho} \sim \frac{1}{\bar{\rho}} −ρ1=−ρˉ+ρ′1≈−ρˉ1(1−ρˉρ′)⟹−ρ1∼ρˉ1
代入水平运动方程得到三项
Δ
p
π
L
f
0
U
U
2
/
L
\begin{align*} \frac{\Delta p}{\pi L} & \tag{特征气压梯度力} \\ f_0 U & \tag{特征地转偏向力}\\ U^2 / L & \tag{特征速度平流}\\ \end{align*}
πLΔpf0UU2/L(特征气压梯度力)(特征地转偏向力)(特征速度平流)
可以得到
Δ
p
π
L
∼
f
0
U
+
U
2
L
\frac{\Delta p}{\pi L} \sim f_0 U + \frac{U^2}{L}
πLΔp∼f0U+LU2
定义 Rossby数:水平惯性力与地转偏向力的比值
R o = U 2 / L f 0 U = U f 0 L Ro = \frac{U^2/L}{f_0 U} = \frac{U}{f_0 L} Ro=f0UU2/L=f0LU
- 当 R o ≥ 1 Ro \ge 1 Ro≥1 则 Δ p f 0 L ∼ U 2 L \frac{\Delta p}{f_0 L} \sim \frac{U^2}{L} f0LΔp∼LU2
- 当 R o < < 1 Ro << 1 Ro<<1 则 Δ p f 0 L ∼ f 0 U \frac{\Delta p}{f_0 L} \sim f_0 U f0LΔp∼f0U ,大气运动加速度很小,满足准地转,为大尺度大气运动的特征
定义Kibel数:惯性运动时间尺度和运动时间尺度的比值
ε
=
U
/
τ
f
U
=
1
/
f
τ
\varepsilon = \frac{U / \tau }{f U} = 1 / f \tau
ε=fUU/τ=1/fτ
其中
1
/
f
1 / f
1/f 可以看作惯性运动的特征时间尺度
当 ε < < 1 \varepsilon << 1 ε<<1 时,表示慢过程,准定常,反之为快过程非定常
连续方程尺度分析
对连续方程做一定的转换
d ln ρ d t + ∂ u ∂ x + ∂ v ∂ y + ∂ w ∂ z = 0 \frac{d\ln \rho}{dt} + \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} =0 dtdlnρ+∂x∂u+∂y∂v+∂z∂w=0
将密度项展开为基本态和扰动项
d ln ρ d t = d ln ρ ˉ d t + d d t ( ρ ′ ρ ˉ ) \frac{d\ln \rho}{dt} = \frac{d \ln \bar{\rho}}{dt} + \frac{d}{dt} (\frac{\rho'}{\bar{\rho}}) dtdlnρ=dtdlnρˉ+dtd(ρˉρ′)
并再局地展开和忽略小项,原方程可以得到
∂ u ∂ x + ∂ v ∂ y ∼ ∂ w ∂ z \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \sim \frac{\partial w}{\partial z} ∂x∂u+∂y∂v∼∂z∂w
因为根据观测已知
∂ u ∂ x + ∂ v ∂ y ≤ U L \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \le \frac{U}{L} ∂x∂u+∂y∂v≤LU
得到
W
D
≤
U
L
⟹
W
≤
U
D
L
\frac{W}{D} \le \frac{U}{L} \Longrightarrow W \le \frac{UD}{L}
DW≤LU⟹W≤LUD
可以说明大尺度大气运动准水平的原因,同时也能给出 W W W 的上限
零级近似和一级近似
将方程每一项进行尺度分析,之后代入大尺度运动的特征值,进行计算
运动方程简化
零级近似:保留特征值最大项
{ − 1 ρ ∂ p ∂ x + f v = 0 − 1 ρ ∂ p ∂ y − f u = 0 − 1 ρ ∂ p ∂ z − g = 0 (静力平衡) \begin{cases} -\frac{1}{\rho} \frac{\partial p}{\partial x} + fv = 0 \\ -\frac{1}{\rho} \frac{\partial p}{\partial y} - fu = 0 \\ -\frac{1}{\rho} \frac{\partial p}{\partial z} - g = 0 & \text{(静力平衡)} \\ \end{cases} ⎩ ⎨ ⎧−ρ1∂x∂p+fv=0−ρ1∂y∂p−fu=0−ρ1∂z∂p−g=0(静力平衡)
零级近似是准定常的,不能作为预报方程,可以作为诊断方程,揭示了中纬度大气的基本特征
一级近似:保留特征值最大项和相比于最大项小一个量级的项
{
∂
u
∂
t
+
u
∂
u
∂
x
+
v
∂
u
∂
y
=
−
1
ρ
∂
p
∂
x
+
f
v
∂
v
∂
t
+
u
∂
v
∂
x
+
v
∂
v
∂
y
=
−
1
ρ
∂
p
∂
y
−
f
u
−
1
ρ
∂
p
∂
z
−
g
=
0
\begin{cases} \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = - \frac{1}{\rho} \frac{\partial p}{\partial x} + fv \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = - \frac{1}{\rho} \frac{\partial p}{\partial y} - fu \\ -\frac{1}{\rho} \frac{\partial p}{\partial z} - g = 0 \\ \end{cases}
⎩
⎨
⎧∂t∂u+u∂x∂u+v∂y∂u=−ρ1∂x∂p+fv∂t∂v+u∂x∂v+v∂y∂v=−ρ1∂y∂p−fu−ρ1∂z∂p−g=0
连续方程简化
零级近似
∂
u
∂
x
+
∂
v
∂
y
=
0
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
∂x∂u+∂y∂v=0
反映中纬度大气具有准水平无辐散的特点
一级近似:保留原来的形式
热力学方程简化
零级近似:
∂
T
∂
t
+
u
∂
T
∂
x
+
v
∂
T
∂
y
+
w
(
γ
d
−
γ
)
=
0
\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w (\gamma_d - \gamma) = 0
∂t∂T+u∂x∂T+v∂y∂T+w(γd−γ)=0
此简化方程表明,在天气尺度中,温度局地变化主要由温度平流和温度垂直绝热变化引起
一级近似即为方程本身,没有变化
地转参数简化
地转参数随着纬度非线性变化,对地转参数在y方向上进行Taylor展开
f
=
f
0
+
β
y
+
o
(
y
)
f = f_0 + \beta y + o(y)
f=f0+βy+o(y)
其中
β
=
2
Ω
0
cos
ϕ
0
a
=
d
f
d
y
∣
ϕ
0
\beta = \frac{2 \Omega _0 \cos \phi_0}{a} = \frac{df}{dy} | _{\phi_0}
β=a2Ω0cosϕ0=dydf∣ϕ0
f f f 平面近似:纬度变化不大的情况下,近似认为地转参数 f f f 为常数
β \beta β 平面近似:纬度变化不大的情况下,近似认为地转参数 f f f 的变化为线性,即 β = ∂ f ∂ y \beta=\frac{\partial f}{\partial y} β=∂y∂f 为常数。
557

被折叠的 条评论
为什么被折叠?



