动力气象-大气运动与尺度分析(2024.9 - 2025.1)

前言

本课程使用教材为《动力气象学》(气象出版社)文章根据课堂笔记和教材内容整理订正编写,文章内容如有错误,请指正。
动力气象与天气学原理不割裂,动力气象在天气学原理的基础上,增加了更多数学物理计算和推导的过程,本章部分内容在《天气学原理》已有涉及,可以与关于天原的文章结合分析。

关于热成风、p坐标系、地转风、地转偏差的内容详见:
天气学原理-大气运动基本特征


动力气象学研究问题基本假设

  1. 连续介质假设:不考虑大气的分子结构,大气是连续流体
  2. 理想气体假设和可压缩性质: 大气是理想气体(没有凝结),是可压缩的(散度不等于0)

研究对象及其性质

中高纬度多尺度的大气运动,目前动力气象主要理论集中在大尺度运动(天气尺度 Synoptic scale)的大气

大尺度大气的运动特征:准定常、准水平、准静态、准地转、无辐散

  1. 考虑地球自转,即地转偏向力,大气准地转
  2. 考虑地球重力作用,大气垂直运动速度很小,大气准水平运动,同时大气重力与垂直气压梯度力近似平衡,即准静力平衡
  3. 大气是层结流体,大气密度随高度变化,层结分为稳定与不稳定层结
  4. 大气中含有水分,对流凝结会释放潜热
  5. 大气下边界不均匀,海陆地形分布影响大气,同时边界层大气运动具有湍流性

大气运动基本方程组

定义一些地球基本常数
Ω = 7.292 × 1 0 − 5 s − 1 r = 6.371 × 1 0 6 m p = 1.01 × 1 0 5 p a . . . \begin{align*} \Omega = 7.292 \times 10 ^{-5} s^{-1} \tag{地转角速度} \\ r = 6.371 \times 10 ^6 m \tag{地球半径} \\ p = 1.01 \times 10 ^5 pa \tag{标准大气压} \\ ... \\ \end{align*} Ω=7.292×105s1r=6.371×106mp=1.01×105pa...(地转角速度)(地球半径)(标准大气压)

任意矢量对时间的导数

矢量求导,定义 A ⃗ \vec{A} A 为任意矢量

d a A ⃗ d t = d A d t i ⃗ + d A d t j ⃗ + d A d t k ⃗ + A x d a i ⃗ d t + A y d a j ⃗ d t + A z d a k ⃗ d t \frac{d_a \vec{A}}{dt} = \frac{dA}{dt} \vec{i} + \frac{dA}{dt} \vec{j} + \frac{dA}{dt} \vec{k}+ A_x \frac{d_a \vec{i}}{dt} + A_y \frac{d_a \vec{j}}{dt} + A_z \frac{d_a \vec{k}}{dt} dtdaA =dtdAi +dtdAj +dtdAk +Axdtdai +Aydtdaj +Azdtdak

画图推导,容易得到

d a i ⃗ d t = Ω ⃗ × i ⃗ \frac{d_a\vec{i}}{dt} = \vec{\Omega} \times \vec{i} dtdai =Ω ×i

其中 Ω ⃗ \vec{\Omega} Ω 为地球旋转角速度,其他方向同理

可得到

d a A ⃗ d t = d A ⃗ d t + Ω ⃗ × A ⃗ \frac{d_a \vec{A}}{dt} = \frac{d\vec{A}}{dt} + \vec{\Omega} \times \vec{A} dtdaA =dtdA +Ω ×A

可以视为两个坐标系矢量对时间求导的转换算子

借助此算子可以计算速度和加速度公式

d a V a ⃗ d t = d V ⃗ d t + 2 Ω ⃗ × V ⃗ + Ω ⃗ × ( Ω ⃗ × R ⃗ ) \frac{d_a \vec{V_a}}{dt} = \frac{d\vec{V}}{dt} + 2 \vec{\Omega} \times \vec{V} + \vec{\Omega} \times (\vec{\Omega} \times \vec{R}) dtdaVa =dtdV +2Ω ×V +Ω ×(Ω ×R )

绝对加速度 = 相对加速度 + 科氏加速度 + 向心加速度

运动方程

将上述加速度公式代入到牛顿第二定律可得到

d V ⃗ d t = ∑ F ⃗ + Ω 2 R ⃗ − 2 Ω ⃗ × V ⃗ \frac{d\vec{V}}{dt} = \sum \vec{F} + \Omega^2 \vec{R} - 2 \vec{\Omega } \times \vec{V} dtdV =F +Ω2R 2Ω ×V

相对加速度 = 真实力 + 惯性离心力 + 地转偏向力

真实力:质量力(万有引力)与表面力(气压梯度力、摩擦力)

∑ F ⃗ = − G M r 2 r ⃗ r − 1 ρ ∇ p + F f ⃗ \sum \vec{F} = - \frac{GM}{r^2} \frac{\vec{r}}{r} - \frac{1}{\rho} \nabla p + \vec{F_f} F =r2GMrr ρ1p+Ff

非真实力:惯性离心力、地转偏向力、重力(万有引力与惯性离心力的合力)

最终合并得到基本的矢量表达的运动方程

d V ⃗ d t = − 1 ρ ∇ p − 2 Ω ⃗ × V ⃗ + g ⃗ + F f ⃗ \frac{d\vec{V}}{dt} = -\frac{1}{\rho} \nabla p - 2 \vec{\Omega} \times \vec{V} + \vec{g} + \vec{F_f} dtdV =ρ1p2Ω ×V +g +Ff
右式后四项分别为气压梯度力项、地转偏向力项、重力项和摩擦力项。

质量守恒与连续方程

Lagrange观点方程

d ρ d t + ρ ∇ ⋅ V ⃗ = 0 \frac{d\rho}{dt} + \rho \nabla \cdot \vec{V} = 0 dtdρ+ρV =0

Eular 观点方程

∂ ρ ∂ t + ∇ ⋅ ( ρ V ⃗ ) = 0 \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{V}) = 0 tρ+(ρV )=0

其中 ∇ ⋅ V ⃗ \nabla \cdot \vec{V} V 为速度散度,对应单位体积体胀速度,即某一气块膨胀和收缩的程度;

∇ ⋅ ρ V ⃗ \nabla \cdot \rho \vec{V} ρV 为质量散度,对应单位体积流体质量通量,即某一空间内流体质量流入流出之间的差异。

热力学能量方程与状态方程

干空气状态方程,动力气象学一般研究干空气,不考虑水汽

p = ρ R T ⟺ α p = R T p = \rho R T \Longleftrightarrow \alpha p = RT p=ρRTαp=RT

其中 α = 1 ρ \alpha = \frac{1}{\rho} α=ρ1 为比容

根据热力学第一定律,得到热力学能量方程

c v d T d t + p d α d t = d Q d t c_v \frac{dT}{dt} + p \frac{d\alpha}{dt} = \frac{dQ}{dt} cvdtdT+pdtdα=dtdQ

其中 c v = 718 J / ( k g ⋅ K ) c_v = 718 J/(kg \cdot K) cv=718J/(kgK) 为干空气定容比热

气块吸收热量,内能增加并且对外做功

状态方程对时间求导,代入上述热力学能量方程,可得到热力学能量方程的另一种表达方式

c p d T d t + R d p d t = d Q d t c_p \frac{dT}{dt} + R \frac{dp}{dt} = \frac{dQ}{dt} cpdtdT+Rdtdp=dtdQ

其中 c p = 1005 J / ( k g ⋅ K ) c_p = 1005 J/(kg \cdot K) cp=1005J/(kgK) 为干空气定压比热

位温及其表示的热力学方程

大气干绝热过程与泊松方程
T 0 T = ( p 0 p ) R / c p \frac{T_0}{T}= (\frac{p_0}{p}) ^{R/c_p} TT0=(pp0)R/cp

气块干绝热过程温度递减率
γ d = − d T d z ≈ 9.8 K / k m \gamma_d = - \frac{dT}{dz} \approx 9.8 K/km γd=dzdT9.8K/km
环境温度递减率,对流层平均而言温度递减率大约6.5K/km
γ = − ∂ T ∂ z ≈ 6.5 K / k m \gamma = - \frac{\partial T}{\partial z} \approx 6.5 K/km γ=zT6.5K/km

位温:气压为 p p p,温度为 T T T 的气块绝热移动到海平面 p s = 1000 h p a p_s = 1000hpa ps=1000hpa 时对应的温度
θ = T ( p s p ) R / c p \theta = T (\frac{p_s}{p}) ^{R/c_p} θ=T(pps)R/cp

取对数,对时间求导,可以得到热力学能量方程,也可以证明干绝热过程中位温守恒

d ln ⁡ θ d t = 1 c p T d Q d t \frac{d\ln \theta}{dt} = \frac{1}{c_p T} \frac{dQ}{dt} dtdlnθ=cpT1dtdQ

运动方程、连续方程、状态方程、热力学能量方程联立称为大气运动方程组。

尺度分析

尺度:反映物理量的量值,例如速度 u u u
u = U u ∗ u = Uu^* u=Uu

其中 U U U 为特征值有量纲, u ∗ u^* u 为无量纲量

动力学尺度

动力学尺度主要可以分为空间尺度、时间尺度和运动尺度

空间尺度分为水平尺度 L L L 和垂直厚度尺度 D D D

运动尺度分为水平速度尺度 (特征值为 U U U ) 和垂直速度尺度(特征值为 W W W ),观测表明,速度场的时空变动尺度可以达到本身的量级

时间尺度:系统演变经历一个阶段所需要的特征时间,对于大尺度系统 τ = L / U \tau = L/U τ=L/U,对于中小尺度系统 τ > L / U \tau > L/U τ>L/U

大气运动各个尺度特征值如下:

运动类型 L ( m ) L(m) L(m) D ( m ) D(m) D(m) U ( m / s ) U(m/s) U(m/s) τ ( s ) \tau(s) τ(s)
大尺度 1 0 6 10^6 106 1 0 4 10^4 104 10 10 10 1 0 5 10^5 105
中尺度 1 0 5 10^5 105 1 0 4 10^4 104 10 10 10 1 0 5 10^5 105
小尺度 1 0 4 10^4 104 1 0 3 ∼ 1 0 4 10^3 \sim 10^4 103104 10 10 10 1 0 4 10^4 104

热力学尺度

热力学变量:包括气压、密度、位温、温度等,热力学变量分解为表征其基本状态的基本热力学变量(仅与 z z z 有关)和扰动量

p = p ( z ) ˉ + p ′ ( x , y , z , t ) ∼ P + Δ P p = \bar{p(z)} + p'(x,y,z,t) \sim P+\Delta P p=p(z)ˉ+p(x,y,z,t)P+ΔP

由于其时空变动值相对于其本身很小,扰动量远小于其本身的量级,即 Δ p p < < 1 \frac{\Delta p}{p} << 1 pΔp<<1

基本态的垂直厚度尺度(标高): H = R T ∗ / g ∼ 1 0 4 m H = RT^*/g \sim 10 ^4 m H=RT/g104m,一般是指随着高度增加,气压减少为起始高度气压的 1 / e 1/e 1/e 时对应的高度,注意,它隶属于热力学变量的尺度,不同于空间尺度中的垂直厚度尺度 D D D,并且 D ≤ H D \le H DH

热力学基本变量随高度的变化可以达到其本身的量级

d p ˉ d z = − ρ ˉ g ∼ π g ∼ P H \frac{d\bar{p}}{dz} = - \bar{\rho}g \sim \pi g \sim \frac{P}{H} dzdpˉ=ρˉgπgHP

其中 π \pi π 为密度 ρ \rho ρ 的特征值

扰动热力学变量的时空变动值可以达到扰动量本身的量级,例如对于气压

∂ p ∂ x = ∂ p ′ ∂ x ∼ Δ P L \frac{\partial p}{\partial x} = \frac{\partial p'}{\partial x} \sim \frac{\Delta P}{L} xp=xpLΔP

水平运动方程尺度分析

将水平运动方程展开到两个方向,并忽略摩擦力,气压梯度力中的密度项可以如下化简(Taylor展开法)

− 1 ρ = − 1 ρ ˉ + ρ ′ ≈ − 1 ρ ˉ ( 1 − ρ ′ ρ ˉ ) ⟹ − 1 ρ ∼ 1 ρ ˉ -\frac{1}{\rho} = -\frac{1}{\bar{\rho} + \rho'} \approx -\frac{1}{\bar{\rho}} (1 - \frac{\rho'}{\bar{\rho}}) \Longrightarrow -\frac{1}{\rho} \sim \frac{1}{\bar{\rho}} ρ1=ρˉ+ρ1ρˉ1(1ρˉρ)ρ1ρˉ1

代入水平运动方程得到三项

Δ p π L f 0 U U 2 / L \begin{align*} \frac{\Delta p}{\pi L} & \tag{特征气压梯度力} \\ f_0 U & \tag{特征地转偏向力}\\ U^2 / L & \tag{特征速度平流}\\ \end{align*} πLΔpf0UU2/L(特征气压梯度力)(特征地转偏向力)(特征速度平流)
可以得到
Δ p π L ∼ f 0 U + U 2 L \frac{\Delta p}{\pi L} \sim f_0 U + \frac{U^2}{L} πLΔpf0U+LU2

定义 Rossby数:水平惯性力与地转偏向力的比值

R o = U 2 / L f 0 U = U f 0 L Ro = \frac{U^2/L}{f_0 U} = \frac{U}{f_0 L} Ro=f0UU2/L=f0LU

  • R o ≥ 1 Ro \ge 1 Ro1 Δ p f 0 L ∼ U 2 L \frac{\Delta p}{f_0 L} \sim \frac{U^2}{L} f0LΔpLU2
  • R o < < 1 Ro << 1 Ro<<1 Δ p f 0 L ∼ f 0 U \frac{\Delta p}{f_0 L} \sim f_0 U f0LΔpf0U ,大气运动加速度很小,满足准地转,为大尺度大气运动的特征

定义Kibel数:惯性运动时间尺度和运动时间尺度的比值
ε = U / τ f U = 1 / f τ \varepsilon = \frac{U / \tau }{f U} = 1 / f \tau ε=fUU/τ=1/fτ
其中 1 / f 1 / f 1/f 可以看作惯性运动的特征时间尺度

ε < < 1 \varepsilon << 1 ε<<1 时,表示慢过程,准定常,反之为快过程非定常

连续方程尺度分析

对连续方程做一定的转换

d ln ⁡ ρ d t + ∂ u ∂ x + ∂ v ∂ y + ∂ w ∂ z = 0 \frac{d\ln \rho}{dt} + \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} =0 dtdlnρ+xu+yv+zw=0

将密度项展开为基本态和扰动项

d ln ⁡ ρ d t = d ln ⁡ ρ ˉ d t + d d t ( ρ ′ ρ ˉ ) \frac{d\ln \rho}{dt} = \frac{d \ln \bar{\rho}}{dt} + \frac{d}{dt} (\frac{\rho'}{\bar{\rho}}) dtdlnρ=dtdlnρˉ+dtd(ρˉρ)

并再局地展开和忽略小项,原方程可以得到

∂ u ∂ x + ∂ v ∂ y ∼ ∂ w ∂ z \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \sim \frac{\partial w}{\partial z} xu+yvzw

因为根据观测已知

∂ u ∂ x + ∂ v ∂ y ≤ U L \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \le \frac{U}{L} xu+yvLU

得到
W D ≤ U L ⟹ W ≤ U D L \frac{W}{D} \le \frac{U}{L} \Longrightarrow W \le \frac{UD}{L} DWLUWLUD

可以说明大尺度大气运动准水平的原因,同时也能给出 W W W 的上限

零级近似和一级近似

将方程每一项进行尺度分析,之后代入大尺度运动的特征值,进行计算

运动方程简化

零级近似:保留特征值最大项

{ − 1 ρ ∂ p ∂ x + f v = 0 − 1 ρ ∂ p ∂ y − f u = 0 − 1 ρ ∂ p ∂ z − g = 0 (静力平衡) \begin{cases} -\frac{1}{\rho} \frac{\partial p}{\partial x} + fv = 0 \\ -\frac{1}{\rho} \frac{\partial p}{\partial y} - fu = 0 \\ -\frac{1}{\rho} \frac{\partial p}{\partial z} - g = 0 & \text{(静力平衡)} \\ \end{cases} ρ1xp+fv=0ρ1ypfu=0ρ1zpg=0(静力平衡)

零级近似是准定常的,不能作为预报方程,可以作为诊断方程,揭示了中纬度大气的基本特征

一级近似:保留特征值最大项和相比于最大项小一个量级的项
{ ∂ u ∂ t + u ∂ u ∂ x + v ∂ u ∂ y = − 1 ρ ∂ p ∂ x + f v ∂ v ∂ t + u ∂ v ∂ x + v ∂ v ∂ y = − 1 ρ ∂ p ∂ y − f u − 1 ρ ∂ p ∂ z − g = 0 \begin{cases} \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = - \frac{1}{\rho} \frac{\partial p}{\partial x} + fv \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = - \frac{1}{\rho} \frac{\partial p}{\partial y} - fu \\ -\frac{1}{\rho} \frac{\partial p}{\partial z} - g = 0 \\ \end{cases} tu+uxu+vyu=ρ1xp+fvtv+uxv+vyv=ρ1ypfuρ1zpg=0

连续方程简化

零级近似
∂ u ∂ x + ∂ v ∂ y = 0 \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 xu+yv=0

反映中纬度大气具有准水平无辐散的特点

一级近似:保留原来的形式

热力学方程简化

零级近似:

∂ T ∂ t + u ∂ T ∂ x + v ∂ T ∂ y + w ( γ d − γ ) = 0 \frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w (\gamma_d - \gamma) = 0 tT+uxT+vyT+w(γdγ)=0
此简化方程表明,在天气尺度中,温度局地变化主要由温度平流和温度垂直绝热变化引起

一级近似即为方程本身,没有变化

地转参数简化

地转参数随着纬度非线性变化,对地转参数在y方向上进行Taylor展开
f = f 0 + β y + o ( y ) f = f_0 + \beta y + o(y) f=f0+βy+o(y)
其中 β = 2 Ω 0 cos ⁡ ϕ 0 a = d f d y ∣ ϕ 0 \beta = \frac{2 \Omega _0 \cos \phi_0}{a} = \frac{df}{dy} | _{\phi_0} β=a2Ω0cosϕ0=dydfϕ0

f f f 平面近似:纬度变化不大的情况下,近似认为地转参数 f f f 为常数

β \beta β 平面近似:纬度变化不大的情况下,近似认为地转参数 f f f 的变化为线性,即 β = ∂ f ∂ y \beta=\frac{\partial f}{\partial y} β=yf 为常数。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值