木材加工——二分答案

C++代码实现,解决将给定原木切割成k段等长木段的问题,利用二分查找确定最大切割长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

木材厂有 n 根原木,现在想把这些木头切割成 k 段长度均为 l 的小段木头(木头有可能有剩余)。

当然,我们希望得到的小段木头越长越好,请求出 l 的最大值。

木头长度的单位是 cm,原木的长度都是正整数,我们要求切割得到的小段木头的长度也是正整数。

例如有两根原木长度分别为 11cm 和 21cm,要求切割成等长的 6 段,很明显能切割出来的小段木头长度最长为 5cm。

输入格式

第一行是两个正整数 n,k,分别表示原木的数量,需要得到的小段的数量。

接下来 n 行,每行一个正整数 ai,表示一根原木的长度。

 输出格式

仅一行,即 l 的最大值。

如果连 1cm 长的小段都切不出来,输出 `0`。

样例输入 
3 7
232
124
456

样例输出 
114

提示

对于 100\% 的数据,有 1<= n <= 10^5,1<= k <= 10^8,1<= ai <=10^8。

#include <bits/stdc++.h>
using namespace std;
#define int long long
#define ios ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
typedef pair<int,int> PII;
const int N=1e6+10;
int a[N];
signed main()
{
    int n,k;
    cin>>n>>k;
    int h=0;
    for (int i=0;i<n;i++)
    {
        cin>>a[i];
        h=max(h,a[i]);
    }
    int l=0;
    while (l<h)
    {
        int ans=0;                     //记录当前选择mid为切割长度所裁成小段木头的个数
        int mid=l+h+1>>1;
        for (int i=0;i<n;i++) ans +=a[i]/mid;
        if (ans>=k) l=mid;             
        else h=mid-1;
    }
    cout<<l<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值