机器学习实验------密度聚类方法之DB-Scan

本文通过四个编程关卡逐步介绍了DBSCAN密度聚类算法的实现,包括两点间距离计算、相邻条件判断、聚类点扩充以及完整算法的组合应用。通过这个实验,读者可以理解并掌握DBSCAN算法的核心步骤。
摘要由CSDN通过智能技术生成

机器学习实验------密度聚类方法之DB-Scan

这个代码不能复制,所以你们就自己敲吧

第1关:两点之间距离及相邻条件判断

编程要求

根据提示,在右侧编辑器补充代码,计算并输出距离样本最近的簇中心索引值。
经过上一实训,我们了解了如何计算两点之间的距离,为了简便运算,这里我们选择欧氏距离作为标准。
1)主函数将传聚类中心点的值至子函数;
2)以样本点为中心,计算样本点到各个聚类中心的距离;
3)找出样本距离最短的聚类中心点,并添加至索引号;
4)第一次聚类划分之后,将聚类点的平均值重新作为聚类中心点;
5)重新整个流程,精确聚类结果。

在这里插入图片描述

第2关:聚合相邻的点,统计聚类数目

编程要求

在右侧编辑器补充代码,计算在样本eps半径范围内的样本点个数以及每个类别的样本点数目。
经过上一实训,我们了解了如何计算两点之间的欧氏距离,本节我们将利用上一节实现的函数完成对在样本eps半径范围内的样本点个数的统计。

1.主函数将数据集传至子函数;
2.以样本点为中心,计算样本点到各个聚类中心的距离;
3.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不想做程序猿的员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值