在现代的机器学习和人工智能应用中,向量相似度检索是一个非常重要的技术,尤其是在文本、图像或其他类型的嵌入向量的操作中。本文将介绍如何在 PostgreSQL 中安装 pgvector
插件,用于存储和检索向量数据,并展示如何通过 Python 脚本向数据库插入向量并执行相似度查询。
一、安装 PostgreSQL 并配置 pgvector 插件
1. 安装 PostgreSQL
首先,确保你已经安装了 PostgreSQL。可以通过 Docker 快速安装 PostgreSQL。
docker pull postgres
docker run --name my_postgres -e POSTGRES_PASSWORD=mysecretpassword -e POSTGRES_USER=myuser -e POSTGRES_DB=mydb -p 5432:5432 -d postgres
上述命令会启动一个名为 my_postgres
的容器,并暴露 5432 端口以便外部连接。
2. 安装 pgvector 插件
pgvector
插件可以让你在 PostgreSQL 中存储向量,并支持高效的向量相似度查询。通过以下步骤安装 pgvector
:
进入 PostgreSQL 容器后,执行以下命令:
docker exec -it my_postgres bash
apt update
apt install -y postgresql-server-dev-all make gcc
git clone htt