图论之幻想迷宫

题目描述:

幻象迷宫可以认为是无限大的,不过它由若干个 N×M 的矩阵重复组成。矩阵中有的地方是道路,用 . 表示;有的地方是墙,用 # 表示。LHX 和 WD 所在的位置用 S 表示。也就是对于迷宫中的一个点(x,y),如果 (xmodn,ymodm) 是 . 或者 S,那么这个地方是道路;如果 (xmodn,ymodm) 是#,那么这个地方是墙。LHX 和 WD 可以向上下左右四个方向移动,当然不能移动到墙上。

请你告诉 LHX 和 WD,它们能否走出幻象迷宫(如果它们能走到距离起点无限远处,就认为能走出去)。如果不能的话,LHX 就只好启动城堡的毁灭程序了……当然不到万不得已,他不想这么做。

输入格式

输入包含多组数据。

每组数据的第一行是两个整数 N,M。

接下来是一个 N×M 的字符矩阵,表示迷宫里 (0,0) 到 (n−1,m−1) 这个矩阵单元。

输出格式

对于每组数据,输出一个字符串,Yes 或者 No

输入输出样例

输入 #1复制

5 4
##.#
##S#
#..#
#.##
#..#
5 4
##.#
##S#
#..#
..#.
#.##

输出 #1复制

Yes
No


思路:
  1. 走到的点标记下,一开始输入的墙标记为1,走过的地方标记为2;每次走的时候都对长宽的两倍取余,保证不越界,这一点和别人写的思想应该是差不多的。

  2. 以上,那么越界的时候我们就传送回去;但是,在这传送之前,我们就可以判断这个地方是否被走过了(上述的越界是超过n*m),如果走过,就意味着我们可以从原来的矩阵走到下一矩阵的该位置,因为地图是无限大的,那么我们是不是就可以认为可以走的出去呢?这么想就是正确的。

对于以上第二点,我们可以把边界写出来。

                  if(x>=n || y>=m)

边界一:

                  f[x%n][y%m]==2

由于我们的填充方式,我们不会重复走我们走过的,这意味着虽然我们越界会被“传送”回来,但是这个位置被填充过了就不能走,那么如果我们回来了,这是不是意味着我们可以无限走呢?那么我们就“离开”了迷宫。

边界二:

                  f[x%n+n][y%m]==2

这个与边界一很像,如果我们到了其他矩阵的相应位置,那么貌似也是可以无限走的,所以其他边界也就很容易得出:

                  f[x%n][y%m+m]==2
                  f[x%n+n][y%m+m]==2

遇到以上条件,那么我们就可以停止了。那么我们需要一个标志变量,表示我们找到了答案,然后以这个标志变量为边界退出其他搜索(第一次搜到能走出去就行了)。
 

这三张图表示的都是我们可以走到其他矩阵的相应位置,当然,不一定是S走到下一个S。虽然对于二三图在该样例中是不能实现的,但是遇到其他地图就可能了

代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;

const int MAXN=1600;
const int dx[4]={1,-1,0,0};
const int dy[4]={0,0,1,-1};
//这里是为了方便表示四个方向,学过坐标轴的应该都懂。
char a[MAXN][MAXN];
bool map1[MAXN<<1][MAXN<<1],map2[MAXN][MAXN];
//map1表示有无走到过这个点,map2表示有无走到过映射点
//扩展2倍的原因只是为了方便穿越以及映射
int n,m,dn,dm;
//dn,dm是扩展后的迷宫长宽。

//本文的迷宫都是从0开始。

bool dfs(int x,int y)//bool表示是否符合要求
{
	if(x==-1)
	 return dfs(dn-1,y);
	if(x==dn)
	 return dfs(0,y);
	if(y==-1)
	 return dfs(x,dm-1);
	if(y==dm)
	 return dfs(x,0);
    //上面四个就是遇到边界时“穿越”。
	const int xx=x%n;
	const int yy=y%m;
    //方便表示扩展后的迷宫与实际迷宫的对应坐标。
	if(map1[x][y] || a[xx][yy]=='#')
	 return false;//映射是墙或者在扩展迷宫里走过就不符要求
	if(map2[xx][yy])
	 return true;//一一对应了,就返回true
	map1[x][y]=true;
	map2[xx][yy]=true;
    //记得标记
	for(int i=0;i<4;i++)
	 if(dfs(x+dx[i],y+dy[i]))
	  return true;//遍历四个方向
	return false;//防止到了结尾还没有return的保险措施
 } 
 
void input(void)
{
	while(cin>>n>>m)
	{
		dn=n<<1;
		dm=m<<1;
		int beginx,beginy;
		for(int i=0;i<n;i++)//迷宫从0开始哦
		 for(int j=0;j<m;j++)
		 {
		 	cin>>a[i][j];
		 	if(a[i][j]=='S')
		 	{
		 		beginx=i;
		 		beginy=j;
			 }//别忘了记录起始点
		 }
		memset(map1,0,sizeof(map1));
		memset(map2,0,sizeof(map2));
        //别忘了每次清零映射数组
		cout<<((dfs(beginx,beginy))?"Yes":"No")<<endl;
	}
}

int main()
{
	input();
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值