地理时空与大模型结合的相关工作思路记录(欢迎大家批评指正)

前提

  • 在本地(联想拯救者)部署好chatglm2-6b轻量化模型基础上:(如何部署请看2.时空轨迹查询分类器的4.部署和调用)

我们以增强主流普适大模型对于时空信息相关问答方面的处理能力为目标展开算法设计和原型系统实现,主要包含三部分研究内容:

(1)通过开源数据采集与预处理,将经纬度坐标时间序列结合地理空间信息与其他关联信息转换成自然语言文本,构建时空语料知识库;

(2)设计时空轨迹查询分类器,提升系统对异构轨迹分析应用的泛化能力;

(3)提示词工程prompt模块设计,提升大语言模型对相关应用的语义理解能力,实现对各类轨迹查询的智能处理。


目录

前提

具体步骤

1.数据处理和构建知识库

1.poi数据获取方面拟采用Python之爬取百度地图兴趣点(POI)数据_百度爬取poi,如何下载多页-CSDN博客

2.将这些自然语言文本整合成语料库:

2.时空轨迹查询分类器设计

为什么需要向量化?

向量化的方法

构建问题分类器

1.使用朴素贝叶斯分类器

2. 分类器的应用

3. 根据类别调用不同的知识库

附:部署chatglm2-6b和调用api相关文档和文章:

本地部署chatglm2-6b以及流式API

保姆级部署步骤

分类器区分用户的问题类别

(1) 聚类问题

K均值聚类(K-means Clustering)

(2)轨迹相似度

动态时间规整(Dynamic Time Warping, DTW)

(3)轨迹预测

使用循环神经网络(Recurrent Neural Networks, RNNs)

(4) 轨迹异常检测

使用统计方法和机器学习方法

3.提示词工程prompt模块设计

1. 定义提示词模板

示例模板

2. 构建提示词生成函数

3. 集成大语言模型(使用Hugging Face Transformers库)

4. 集成到API服务

详细解释

总结

1. 构建时空语料知识库

2. 设计时空轨迹查询分类器

3. 设计提示词工程(Prompt Engineering)模块


具体步骤

1.数据处理和构建知识库

然后对数据进行清洗,处理缺失值和异常值。确保数据的一致性和完整性,这对后续的自然语言处理非常重要!!!

将每个数据点(如一个经纬度时间点)转换成自然语言描述。这可以通过以下几种方式实现:

  • 地点描述:将地点名称或地址转换成对应的自然语言描述。例如,将“纽约中央公园”转换成“纽约市中央公园位于美国纽约州曼哈顿岛上的一个著名公园”。
  • 时间序列描述:将时间序列数据转换成对应的时间描述,如日期和具体时间。例如,将时间戳转换成格式化的日期时间描述,“2024年7月17日上午10点”。
  • 经纬度描述:将经纬度转换成对应的地理位置描述,可以包括周围环境和地理特征。“经度40.7128,纬度-74.0060”可以转换成“位于北纬40.7128度,西经74.0060度”。

将上述描述结合起来,形成完整的自然语言文本。例如,“2024年7月17日上午10点,位于北纬40.7128度、西经74.0060度的纽约市中央公园是纽约州曼哈顿岛上的一个著名公园”。

  • 2.将这些自然语言文本整合成语料库:

当涉及将地理空间信息和时间序列转换成自然语言文本时,可以借助一些开源工具和库来简化这个过程。以下是一些可能有用的工具和资源:

  • Geopy:

Geopy 是一个Python库,提供了地理编码和逆地理编码的功能。你可以使用它来将经纬度坐标转换成地理位置描述,例如城市、州、国家等。
官方网站和文档:Welcome to GeoPy’s documentation! — GeoPy 2.4.1 documentation

  • Arrow:

Arrow 是一个Python库,用于处理日期和时间。它可以帮助你轻松地格式化时间戳和时间序列,以生成自然语言的时间描述。
官方网站和文档:Arrow: Better dates & times for Python — Arrow 🏹 1.3.0 documentation

  • Natural Language Toolkit (NLTK):

NLTK 是一个广泛用于自然语言处理的Python库,提供了许多文本处理工具和语料库。虽然它主要用于语言处理任务,但可以在生成自然语言描述时提供一些帮助。
官方网站和文档:NLTK :: Natural Language Toolkit
这些工具可以结合使用,根据你的具体需求和数据格式,来生成自然语言文本描述。例如,你可以使用Geopy获取地理位置的描述,使用Arrow来处理时间序列的描述,然后将它们结合起来形成完整的自然语言句子。

  • 3.存储

文档型数据库(如MongoDB)适合存储半结构化或非结构化的数据。你可以将时空信息以JSON格式存储在文档中,灵活地组织和查询数据。由于模型的原因,我们只能使用文本型的方式存储。

[
  {
    "name": "芦果村革命烈士纪念碑",
    "category": "旅游景点",
    "type": "纪念馆",
    "longitude": 129.175254,
    "latitude": 42.19399,
    "province": "吉林省",
    "city": "延边朝鲜族自治州",
    "district": "和龙市"
  },
  {
    "name": "崇善镇革命烈士纪念碑",
    "category": "旅游景点",
    "type": "其他",
    "longitude": 129.001624,
    "latitude": 42.100381,
    "province": "吉林省",
    "city": "延边朝鲜族自治州",
    "district": "和龙市"
  },
  // 其他POI条目...
]
类似这样的json结构

  • 4.数据标注

接下来为每个POI添加额外的语义信息或关联问题和答案:

[
  {
    "name": "芦果村革命烈士纪念碑",
    "category": "旅游景点",
    "type": "纪念馆",
    "longitude": 129.175254,
    "latitude": 42.19399,
    "province": "吉林省",
    "city": "延边朝鲜族自治州",
    "district": "和龙市",
    "questions": [
      {
        "question": "芦果村革命烈士纪念碑位于哪个城市?",
        "answer": "和龙市"
      },
      {
        "question": "芦果村革命烈士纪念碑是什么类型的景点?",
        "answer": "纪念馆"
      },
      {
        "question": "芦果村革命烈士纪念碑的经纬度是多少?",
        "answer": "129.175254, 42.19399"
      }
    ]
  },
  {
    "name": "崇善镇革命烈士纪念碑",
    "category": "旅游景点",
    "type": "其他",
    "longitude": 129.001624,
    "latitude": 42.100381,
    "province": "吉林省",
    "city": "延边朝鲜族自治州",
    "district": "和龙市",
    "questions": [
      {
        "question": "崇善镇革命烈士纪念碑位于哪个省份?",
        "answer": "吉林省"
      },
      {
        "question": "崇善镇革命烈士纪念碑是什么类型的景点?",
        "answer": "其他"
      },
      {
        "question": "崇善镇革命烈士纪念碑的地址是什么?",
        "answer": "崇善镇"
      }
    ]
  }
]
让大模型理解并运用知识库回答问题。

2.时空轨迹查询分类器设计

时空轨迹查询分类器的目标是识别和分类不同类型的轨迹查询,例如查询地点、路径规划、旅游景点查询等。这种分类器可以帮助系统更好地理解用户的意图,从而提供更准确的回答或建议。

具体步骤和工具:

  • 数据准备

    • 收集包含不同类型轨迹查询的数据集。每个数据样本应包括查询文本和其对应的标签(例如地点查询、路径规划等)。
  • 特征提取

    • 使用自然语言处理技术(如词向量、词袋模型、TF-IDF等)从查询文本中提取特征。这些特征可以帮助分类器理解查询的语义和意图。
  • 模型选择

    • 选择合适的机器学习模型或深度学习模型来训练分类器,如支持向量机(SVM)、多层感知器(MLP)、卷积神经网络(CNN)或者循环神经网络(RNN)等。
    • 可以使用开源工具和库,如Scikit-Learn、TensorFlow、PyTorch等来实现和训练模型。
  • 模型训练和评估

    • 使用标记好的数据集对模型进行训练,并使用交叉验证等技术来评估模型的性能。
    • 确保模型能够准确地分类不同类型的轨迹查询,具备良好的泛化能力。

向量化是将文本转换为计算机可以理解和处理的数值形式的过程。在自然语言处理中,文本通常是以单词或者词组的形式存在的,而计算机更擅长处理数字。因此,我们需要将文本转换成数字向量,这样计算机就可以对其进行分析、建模或者处理。

为什么需要向量化?

计算机不能直接理解和处理文本,因此我们需要将文本转换成向量的形式。向量化的目的是将文本的语义信息编码为数值特征,以便于后续的机器学习或深度学习模型进行处理和分析。

向量化的方法

有几种常用的向量化方法,其中最常见的包括词袋模型(Bag of Words)和 TF-IDF(Term Frequency - Inverse Document Frequency):

  1. 词袋模型

    • 原理:将文本表示为词语在文档中的出现次数。
    • 示例:如果有两个文档:“I love data science.” 和 “Data science is fun.”,词袋模型会将它们转换成向量,统计每个单词的出现次数,如 [1, 1, 1, 0, 0] 表示 ["I", "love", "data", "science", "fun"]。
  2. TF-IDF

    • 原理:衡量单词在文档中的重要性,通过计算单词在文档中的频率来加权。
    • 示例:TF-IDF 将词频与逆文档频率相乘,高频词但同时在多个文档中出现的单词将得到较低的权重,如 "data" 在文本中频繁出现,但在所有文档中都出现,因此它的权重将较低。

假设有以下两个文本:

  • 文本1:I love data science.
  • 文本2:Data science is fun.

使用词袋模型向量化,可以得到以下向量表示:

  • 词袋模型向量化结果:
    • 文本1:[1, 1, 1, 0, 0] # 对应 ["I", "love", "data", "science", "fun"]
    • 文本2:[0, 0, 1, 1, 1] # 对应 ["I", "love", "data", "science", "fun"]

使用 TF-IDF 向量化,可以得到以下向量表示(这里为了简化示例,并未展示 TF-IDF 的具体值):

  • TF-IDF 向量化结果:
    • 文本1:[tfidf_1, tfidf_1, tfidf_1, tfidf_1, tfidf_1] # 对应 ["I", "love", "data", "science", "fun"]
    • 文本2:[tfidf_2, tfidf_2, tfidf_2, tfidf_2, tfidf_2] # 对应 ["I", "love", "data", "science", "fun"]

通过向量化,我们可以将文本转换成计算机可以理解和处理的数值形式,这样就可以应用各种机器学习算法或深度学习模型来处理文本数据,进行分类、聚类、预测等任务。

构建问题分类器

首先,需要训练一个问题分类器,将用户的输入文本分类到不同的预定义类别。这个分类器可以是基于机器学习算法(如朴素贝叶斯、支持向量机等)或者深度学习模型(如卷积神经网络、循环神经网络等)。

1.使用朴素贝叶斯分类器
from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.pipeline import Pipeline

# 训练数据
X_train = ["文本1", "文本2", ...]  # 训练文本数据
y_train = ["类别1", "类别2", ...]  # 对应的类别标签

# 创建 TF-IDF 向量化器和朴素贝叶斯分类器
vectorizer = TfidfVectorizer()
clf = MultinomialNB()

# 构建 Pipeline
pipeline = Pipeline([('vectorizer', vectorizer), ('clf', clf)])

# 训练模型
pipeline.fit(X_train, y_train)

2. 分类器的应用

使用训练好的分类器对用户输入的问题进行分类,得到问题所属的类别。

# 用户输入的问题
input_text = "用户输入的问题文本"

# 使用分类器预测类别
predicted_class = pipeline.predict([input_text])[0]

print(f"预测类别:{predicted_class}")
3. 根据类别调用不同的知识库

根据分类器预测的类别,决定调用哪个知识库来获取回答。每个类别可以对应一个或多个知识库,这些知识库可以是预先准备好的数据文件、数据库或者调用外部的API接口。

# 根据预测的类别选择知识库
if predicted_class == "类别1":
    # 调用知识库1,例如读取本地文件或者查询数据库
    response = knowledge_base_1.retrieve_answer(input_text)
elif predicted_class == "类别2":
    # 调用知识库2,例如调用外部API接口
    response = knowledge_base_2.query_external_api(input_text)
else:
    # 默认处理,可以返回默认回答或提示无法处理
    response = "抱歉,暂时无法回答您的问题。"

print(f"回答:{response}")

附:部署chatglm2-6b和调用api相关文档和文章:

本地部署chatglm2-6b以及流式API
保姆级部署步骤

分类器区分用户的问题类别

拟设计四种,目前只是有想法,还在进一步探索学习中,分类器这方面如果实现可以锦上添花,更加出彩和创新独特。

(1) 聚类问题
K均值聚类(K-means Clustering)

K均值聚类是一种简单且有效的聚类算法,它尝试将数据点分为预先指定数量的簇。适用于数据点数目较大,类别数已知的情况。它通过迭代优化类别中心位置,将数据点分配到最近的类别中。

Introduction to Data Mining 2nd Edition PDF 下载

提取码:dpo1

from sklearn.cluster import KMeans
import numpy as np

# 准备数据,这里假设数据是二维的
data = np.array([[1, 2], [1.5, 1.8], [5, 8], [8, 8], [1, 0.6], [9, 11]])

# 初始化K均值模型
kmeans = KMeans(n_clusters=2)

# 拟合模型
kmeans.fit(data)

# 获取聚类结果
labels = kmeans.labels_
centroids = kmeans.cluster_centers_

print("Cluster labels:", labels)
print("Cluster centroids:", centroids)
(2)轨迹相似度
动态时间规整(Dynamic Time Warping, DTW)

DTW 是一种用于比较两个时间序列之间相似度的方法,它考虑序列之间的时间对齐关系。

DTW相关论文资料

DTW资料

from scipy.spatial.distance import euclidean
from fastdtw import fastdtw
import numpy as np

# 准备两个时间序列
x = np.array([1, 2, 3, 4, 5])
y = np.array([1.5, 2.5, 3.5, 4.5, 5.5])

# 计算DTW距离
distance, path = fastdtw(x, y, dist=euclidean)
print("DTW distance:", distance)
(3)轨迹预测
使用循环神经网络(Recurrent Neural Networks, RNNs)

RNNs 可以有效处理序列数据,并用于轨迹预测任务。

import torch
import torch.nn as nn
import numpy as np

# 定义一个简单的循环神经网络模型
class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(RNN, self).__init__()
        self.hidden_size = hidden_size
        self.rnn = nn.RNN(input_size, hidden_size, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)

    def forward(self, x):
        out, _ = self.rnn(x)
        out = self.fc(out[:, -1, :])  # 取最后一个时间步的输出作为预测结果
        return out

# 准备数据
input_size = 1
hidden_size = 32
output_size = 1
seq_length = 10

# 生成示例数据
data = np.sin(np.linspace(0, 100, num=seq_length))[:, None]
x_data = torch.Tensor(data[:-1]).unsqueeze(0)  # 输入数据,去掉最后一个时间步
y_data = torch.Tensor(data[1:]).unsqueeze(0)   # 目标数据,从第二个时间步开始

# 初始化模型
model = RNN(input_size, hidden_size, output_size)

# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

# 训练模型
for epoch in range(100):
    outputs = model(x_data)
    loss = criterion(outputs, y_data)
    
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    
    if (epoch+1) % 10 == 0:
        print(f'Epoch [{epoch+1}/100], Loss: {loss.item():.4f}')

# 测试模型
model.eval()
with torch.no_grad():
    future = 20  # 预测未来20个时间步
    pred = model(x_data)
    for _ in range(future):
        x_data = torch.cat([x_data[:, 1:], pred.unsqueeze(0)], dim=1)
        pred = model(x_data)
        print("Predicted:", pred.item())

理解循环神经网络

(4) 轨迹异常检测
使用统计方法和机器学习方法
from sklearn.ensemble import IsolationForest
import numpy as np

# 准备数据,这里假设数据是二维的
data = np.array([[1, 2], [1.5, 1.8], [5, 8], [8, 8], [1, 0.6], [9, 11]])

# 初始化异常检测模型
clf = IsolationForest(random_state=0)

# 拟合模型
clf.fit(data)

# 预测数据点的异常程度
outliers = clf.predict(data)
print("Outliers:", outliers)

高维大数据异常检测技术综述

一文详解8种异常检测方法

数据挖掘领域常用异常检测算法总结以及原理解析(一)

数据挖掘领域常用异常检测算法总结以及原理解析(二)

3.提示词工程prompt模块设计

1. 定义提示词模板

提示词模板是预定义的一组问题或命令,用来引导大语言模型生成相关的响应。针对轨迹时空数据,可以设计不同的模板来涵盖各种查询类型。

示例模板
  • 轨迹相似度查询

    • "请比较以下两段轨迹的相似度:{轨迹1} 和 {轨迹2}。"
    • "根据时间和空间信息,轨迹 {轨迹1} 与轨迹 {轨迹2} 的相似度如何?"
  • 轨迹预测

    • "基于以下轨迹数据预测下一段路径:{轨迹}。"
    • "给定轨迹 {轨迹},预测未来的移动路径。"
  • 轨迹异常检测

    • "以下轨迹数据是否包含异常点?{轨迹}。"
    • "请检测轨迹 {轨迹} 中的异常行为。"
  • 轨迹聚类

    • "将以下轨迹数据进行聚类:{轨迹数据集合}。"
    • "请将轨迹数据 {轨迹数据集合} 分成不同的群组。"

2. 构建提示词生成函数

编写一个函数,根据用户的输入动态生成提示词。这个函数将接受用户输入,并根据预定义的模板生成完整的提示词。

def generate_prompt(template, **kwargs):
    """
    根据模板和关键词参数生成提示词。

    :param template: 提示词模板
    :param kwargs: 关键词参数,用于填充模板中的占位符
    :return: 生成的提示词
    """
    return template.format(**kwargs)

# 示例使用
template = "请比较以下两段轨迹的相似度:{轨迹1} 和 {轨迹2}。"
prompt = generate_prompt(template, 轨迹1="轨迹数据1", 轨迹2="轨迹数据2")
print(prompt)  # 输出: 请比较以下两段轨迹的相似度:轨迹数据1 和 轨迹数据2。

3. 集成大语言模型(使用Hugging Face Transformers库)

将生成的提示词传递给大语言模型,并获取模型的响应。这里使用ChatGLM2-6B来处理提示词并生成响应。

from transformers import AutoTokenizer, AutoModelForCausalLM

# 初始化模型和分词器
tokenizer = AutoTokenizer.from_pretrained("chatglm2-6b")
model = AutoModelForCausalLM.from_pretrained("chatglm2-6b")

def query_model(prompt):
    """
    使用大语言模型处理提示词并生成响应。

    :param prompt: 提示词
    :return: 模型的响应
    """
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs, max_length=512)
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return response

# 示例使用
response = query_model(prompt)
print(response)

4. 集成到API服务

将提示词生成和模型查询功能集成到API服务中,使其可以通过API进行访问。这可以使用FastAPI来实现。具体还要参考参照调用api

from fastapi import FastAPI, Request
import uvicorn

app = FastAPI()

@app.post("/trajectory/query")
async def trajectory_query(request: Request):
    data = await request.json()
    query_type = data.get("query_type")
    trajectory1 = data.get("trajectory1")
    trajectory2 = data.get("trajectory2")
    trajectory_data = data.get("trajectory_data")

    # 根据查询类型生成相应的提示词
    if query_type == "similarity":
        template = "请比较以下两段轨迹的相似度:{轨迹1} 和 {轨迹2}。"
        prompt = generate_prompt(template, 轨迹1=trajectory1, 轨迹2=trajectory2)
    elif query_type == "prediction":
        template = "基于以下轨迹数据预测下一段路径:{轨迹}。"
        prompt = generate_prompt(template, 轨迹=trajectory1)
    elif query_type == "anomaly_detection":
        template = "以下轨迹数据是否包含异常点?{轨迹}。"
        prompt = generate_prompt(template, 轨迹=trajectory1)
    elif query_type == "clustering":
        template = "将以下轨迹数据进行聚类:{轨迹数据集合}。"
        prompt = generate_prompt(template, 轨迹数据集合=trajectory_data)
    else:
        return {"error": "Invalid query type"}

    # 使用模型处理提示词并生成响应
    response = query_model(prompt)
    return {"response": response}

if __name__ == '__main__':
    uvicorn.run(app, host='0.0.0.0', port=8000)
详细解释
  1. 初始化模型和分词器

    tokenizer = AutoTokenizer.from_pretrained("chatglm2-6b")
    model = AutoModelForCausalLM.from_pretrained("chatglm2-6b")
    

    AutoTokenizerAutoModelForCausalLM是Hugging Face库中的类,用于加载预训练的分词器和模型。from_pretrained("chatglm2-6b")会从Hugging Face的模型库中下载名为"chatglm2-6b"的预训练模型和分词器。

  2. 将提示词转换成模型可以理解的格式

    inputs = tokenizer(prompt, return_tensors="pt")
    

    tokenizer(prompt, return_tensors="pt")将提示词(文本字符串)转换成模型可以理解的格式,这里转换成了PyTorch张量(Tensor)。

  3. 让模型生成文本:

    outputs = model.generate(**inputs, max_length=512)

    model.generate(**inputs, max_length=512)让模型生成文本。这里设置了生成的最大长度为512个标记(tokens)。**inputs表示将字典中的键值对作为参数传递给函数。

  4. 将生成的文本转换回人类可以阅读的格式

response = tokenizer.decode(outputs[0], skip_special_tokens=True)

  tokenizer.decode(outputs[0], skip_special_tokens=True)将模型生成的标记序列解码成文本字符串,并且跳过特殊标记。        

总结

1. 构建时空语料知识库

目标是通过开源数据采集与预处理,将经纬度坐标时间序列结合地理空间信息与其他关联信息转换成自然语言文本,构建一个时空语料知识库。这一步骤涉及数据的收集、清洗、处理和自然语言生成,并结合数据标注,将数据语义转换成自然语言以便构建一个丰富的时空信息数据库。

2. 设计时空轨迹查询分类器

目标是提升系统对异构轨迹分析应用的泛化能力。通过设计和训练一个分类器,将不同类型的轨迹查询(如聚类问题、轨迹相似度、轨迹预测、轨迹异常检测等)分类。这一部分的工作包括选择合适的机器学习或深度学习模型,进行特征提取和模型训练,并对分类器进行评估和优化。

3. 设计提示词工程(Prompt Engineering)模块

目标是提升大语言模型对相关应用的语义理解能力,实现对各类轨迹查询的智能处理。通过设计不同的提示词模板,引导大语言模型(如ChatGLM2-6B)生成准确和相关的响应。这一步骤包括创建适合不同查询类型的提示词模板,并实现动态生成提示词的功能,集成到大语言模型中进行处理。

这三个部分共同组成了增强大语言模型对时空信息相关问答处理能力的算法设计和原型系统实现的整体框架。

以上是我个人对我正在做的工作和探索的一点思路和思考,欢迎大家批评指正!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值