10.10学习日志

一.事件概率

1.事件

事件是指在某个试验或观察中可能发生的结果或结果的集合。是样本空间的一个子集,可以包含一个或多个样本点,也可以是整个样本空间。事件用大写字母,如 A,B,C 等表示。

例子

事件A={1,2,3}

1.1 概念

1.1 基本事件

基本事件是指试验中不可再分的最简单的事件。每个基本事件代表一个单一的可能结果。

例子:

  • 抛一枚硬币:基本事件是“正面”和“反面”。

  • 掷一个六面骰子:基本事件是“1点”、“2点”、“3点”、“4点”、“5点”和“6点”。

1.2 复合事件

复合事件是由多个基本事件组合而成的事件。复合事件代表多个可能结果的集合。

例子:

  • 抛两枚硬币:复合事件可以是“至少一个正面”,这个事件包含“正面-正面”、“正面-反面”和“反面-正面”三个基本事件。

  • 掷一个六面骰子:复合事件可以是“点数大于3”,这个事件包含“4点”、“5点”和“6点”三个基本事件。

1.3 必然事件

必然事件是指在试验中一定会发生的事件。必然事件的概率为1。在样本空间中,必然事件包括了样本空间中的所有样本点。

例子:

  • 掷一个六面骰子:“点数在1到6之间”是一个必然事件。

1.4 不可能事件

不可能事件是指在试验中绝对不会发生的事件。不可能事件的概率为0。通常用∅表示。

例子:

  • 掷一个六面骰子:“点数大于6”是一个不可能事件。

1.5 样本空间

样本空间是指试验中所有可能结果的集合。样本空间通常用大写字母 Ω 表示。

例子:

  • 抛一枚硬币:样本空间 Ω={正面,反面}。

  • 掷一个六面骰子:样本空间 Ω={1,2,3,4,5,6}。

1.6 样本点

样本点是指样本空间中的每一个元素,即每一个可能的结果。样本点通常用小写字母ω表示。

例子:

  • 抛一枚硬币:样本点是“正面”和“反面”。

  • 掷一个六面骰子:样本点是“1点”、“2点”、“3点”、“4点”、“5点”和“6点”。

注:必然事件和样本空间可以被视为等价的,但理论上它们是不同的概念。必然事件是事件的一个实例,而样本空间是定义这些事件的基础集合。

1.2 事件间的关系

1.2.1 包含关系

包含关系是指一个事件是另一个事件的子集。如果事件 A 包含在事件 B 中,那么 A 发生时,B 必然发生,即:A⊆B

1.2.2 并集

并事件是指两个或多个事件中至少有一个事件发生的情况。事件 A 和事件 B 的并事件记作 A∪B或A+B,表示 A 或 B 发生。

A+B\supset A,A+A=A,A+∅=A,A+ Ω= Ω

1.2.3 交集

交事件是指两个或多个事件同时发生的情况。事件A 和事件 B 的交事件记作 A∩B或AB,表示 A 和 B 同时发生。

AB⊂A,AA=A,A∅=∅,AΩ=A

1.2.4 差集

如果事件 A 发生而事件 B 不发生,则表示这些事件的差集发生了。即将事件A中的A和B的公共部分去掉。事件 A 和 B 的差集表示为 A−B

A-B=A-AB

1.2.5 互斥事件

互斥事件是指两个事件不能同时发生。如果事件A 和事件 B 是互斥事件,那么 A 和 B 的交集为空集,即:AB=∅

例子:

  • 抛一枚硬币:事件“正面”和事件“反面”是互斥事件。

  • 掷一个六面骰子:事件“点数为1”和事件“点数为2”是互斥事件。

1.2.6 对立事件

对立事件是指两个事件互为对立,即一个事件发生时,另一个事件必然不发生。如果事件 A 和事件 B 是对立事件,那么 A 和 B 的并集是样本空间,且 A 和 B 的交集为空集,即:

A+B=Ω且AB=∅ 通常,事件 A 的对立事件记作

A^c 或 \overline A

A-B=A-AB=A\overline B

例子:

  • 抛一枚硬币:事件“正面”和事件“反面”是对立事件。

  • 掷一个六面骰子:事件“点数为1”和事件“点数不为1”是对立事件。

互斥和对立事件的区别

1.两个事件对立,则一定是互斥事件

2.互斥事件适用于多个事件,对立适用于两个事件

3.互斥事件,A和B不能同时发生,也可以都不发生;对立事件有且只有一个发生。

1.2.7 完备事件组

是一组事件,它们满足以下两个条件:

  1. 互斥性:完备事件组中的任意两个事件不能同时发生。也就是说,这些事件两两互斥。

  2. 完备性:完备事件组中的事件涵盖了样本空间中所有可能的结果,并且至少有一个事件必然发生。换句话说,这些事件的并集是整个样本空间,且它们的并集是必然事件。

用数学术语来说,如果有一个样本空间 Ω 和一个事件集合 {A1,A2,...,An},那么这个事件集合是完备的,如果:

  • 对于所有的 i≠j,有

    A_i∩A_j=∅

    (互斥性)。

  • ⋃_{i=1}^{n}A_i=Ω

    (完备性)。

例子:

假设我们掷一个公平的六面骰子,样本空间是 Ω={1,2,3,4,5,6}。

  • {1,2,3,4,5,6}是一个完备事件组。

  • 这些事件两两互斥,并且它们的并集包含了所有可能的结果,即整个样本空间。

1.3 运算律

1.3.1 交换律

交换律是指事件的并集和交集运算满足交换性,即运算的顺序不影响结果。

  • 并集的交换律

    A∪B=B∪A

  • 交集的交换律

    A∩B=B∩A

1.3.2 结合律

结合律是指事件的并集和交集运算满足结合性,即多个事件的运算顺序不影响结果。

  • 并集的结合律

    (A∪B)∪C=A∪(B∪C)

  • 交集的结合律

    (A∩B)∩C=A∩(B∩C)

1.3.3 分配律

分配律是指事件的并集和交集运算满足分配性,即一个运算对另一个运算的分配关系。

  • 并集对交集的分配律

    A∪(B∩C)=(A∪B)∩(A∪C)

  • 交集对并集的分配律

    A∩(B∪C)=(A∩B)∪(A∩C)

1.4.4 对偶律

对偶律是指事件的补集运算的对偶关系,即并集的补集和交集的补集之间的关系。

  • 第一对偶律

    \overline {(A∪B)}=\overline A∩\overline B

  • 第二对偶律

    \overline {(A∩B)}=\overline A∪\overline B

2.概率

2.1 定义

对于一个事件 A,其概率 P(A) 定义为:

P(A)=\dfrac{事件 A 包含的基本事件数}{样本空间中的基本事件总数}

2.2 古典模型

古典概率模型,也称为古典模型或等可能模型,是一种概率论中用于计算随机事件发生概率的方法。它基于以下假设:

  1. 有限性:样本空间是有限的,即所有可能的结果可以被列举出来。

  2. 等可能性:样本空间中的每个基本事件(样本点)出现的可能性是相等的。

在古典模型中,一个事件的概率可以通过以下公式计算:

P(A)=\dfrac{事件 A 包含的基本事件数}{样本空间中的基本事件总数}

古典模型的步骤:

  1. 确定样本空间:列出随机试验所有可能的结果。

  2. 计数:计算样本空间中基本事件的总数。

  3. 识别事件:确定事件 A 包含的基本事件数。

  4. 计算概率:使用上述公式计算事件 A 的概率。

2.3 排列(不重复排列)

排列的定义

给定一个包含 n 个元素的集合,从中选择 r 个不同元素(r≤n)进行排列,意味着这 r 个元素的顺序是重要的。

排列的符号

排列通常用 P(n,r)表示,读作“n 个中取 r个的排列数”。

排列的公式

排列数的计算公式是:

P(n,r)=\dfrac{n!}{(n−r)!}

其中 n!(n的阶乘)表示从 n 到 1 的所有正整数的乘积,即

n!=n×(n−1)×(n−2)×…×1

排列的计算

  • 如果 r=n,即从 n 个元素中选择 n 个元素进行全排列,排列数为 n!。

  • 如果 r=0,即从 n 个元素中选择 0 个元素进行排列,排列数为 1,因为空集的排列只有一种。

  • 如果 r>n,排列数为 0,因为不可能从 n 个元素中选择超过 n 个元素。

2.4 组合

组合的定义

给定一个包含 n 个元素的集合,从中选择 r 个不同元素(r≤n)进行组合,意味着这 r 个元素的顺序并不重要。

组合的符号

组合通常用

C(n,r)或 \begin{pmatrix} n \\ r \end{pmatrix}

表示,读作“n 选 r”或“二项式系数”。

组合的公式

组合数的计算公式是:

C(n,r)=\begin{pmatrix} n \\ r \end{pmatrix}=\dfrac{P(n,r)}{r!}=\dfrac{n!}{r!(n−r)!}

组合的性质

  • 对称性:C(n,r)=C(n,n−r)

  • 边界条件:C(n,0)=C(n,n)=1

  • 当 r>n 时,C(n,r)=0

2.5 几何概型

几何概型是概率论中的一个基本概念,它用于处理那些结果可以被表示为几何区域(如线段、平面区域、立体区域等)的随机试验的概率问题。几何概型的基本思想是将概率问题转化为几何区域上的面积、体积或长度等几何量的比值。

几何概型的计算:

几何概型的概率可以通过以下步骤计算:

  1. 确定样本空间:首先确定样本空间的几何区域,比如长度、面积或体积。

  2. 度量样本空间:计算样本空间的度量,比如长度、面积或体积。

  3. 确定事件区域:确定事件对应的几何区域,并计算其度量。

  4. 计算概率:事件的概率等于事件区域的度量除以样本空间的度量。

几何概型的公式:

如果事件 A 对应的几何区域的度量为 m(A),样本空间 Ω 的度量为 m(Ω),则 A 的概率 P(A)为:

P(A)=\dfrac{m(A)}{m(Ω)}

2.6 频率

  1. 定义:频率是一个经验概念,它通过实际观察或实验来确定。频率是某个事件在一系列重复实验中发生的次数与总实验次数之比。

  2. 性质:频率的值可以是任何非负实数,包括0(事件一次也没发生)和任意正数(事件多次发生)。

  3. 计算:频率是通过实际计数得到的,例如,如果一个事件发生了 m 次,在 n次独立的重复实验中,其频率为 mn。

  4. 不确定性:频率是随机的,它随着实验次数的增加而波动,但根据大数定律,当实验次数足够多时,频率会趋近于概率。

概率与频率的关系

  • 大数定律:随着实验次数的增加,事件发生的频率趋近于其概率。

  • 长期稳定性:在大量重复实验中,频率的稳定性可以作为概率的一个估计。

  • 经验估计:在没有理论模型的情况下,可以通过频率来估计概率。

2.7 基本性质(公理化)

  • 非负性:对于任意事件 A,有 P(A)≥0。

  • 规范性:必然事件的概率为1,即 P(Ω)=1。

  • 可加性:对于互斥事件 A 和 B,有 P(A+B)=P(A)+P(B)。

性质1:P(∅)=0

性质2:

P(\overline A)=1-P(A)

性质3:

P(A-B)=P(A)-P(AB)\\ A\supset B,P(A-B)=P(A)-P(B),且P(A)\geq P(B)

性质4:P(A+B)=P(A)+P(B)-P(AB)

证明:

A+B=A+(B-AB),可根据图形理解。

P(A+B)=P(A+(B-AB))=P(A)+P(B)-P(AB)

注意:性质4是可加性的一般性描述,如果A和B互斥那么AB为空集,则P(AB)=0

另外性质4还适用于多个事件相加:

P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)

如果A、B、C是互斥事件:则P(AB)=P(AC)=P(BC)=P(ABC)=0

所以:

P(A+B+C)=P(A)+P(B)+P(C)

2.8 条件概率

条件概率用于描述在已知某一事件发生的情况下,另一事件发生的概率。条件概率通常表示为 P(A∣B),读作“在事件 B 发生的条件下,事件 A 发生的概率”。

定义

设Ω为样本空间, A和 B 是两个事件,且 P(B)>0。事件 A 在事件 B 发生的条件下的条件概率 P(A∣B) 定义为:

P(A∣B)=\dfrac{P(A∩B)}{P(B)}=\dfrac{P(AB)}{P(B)}

说明:

P(A):无条件概率,样本空间为Ω

P(A|B):条件概率,样本空间不再是Ω,而是B或者

Ω_B

所以条件概率定义公式中P(B)为B事件发生的总事件数概率,P(A∩B)是在B发生的条件下A发生的事件概率,即A和B共同发生的事件概率

基本性质

  • 非负性:对于任意事件 A和B,有 P(A|B)≥0。

  • 规范性: P(Ω|B)=1。

  • 可加性:对于互斥事件

    $$
    A_1、A_2、...、A_n,有 P(A_1+A_2+...+A_n|B)=P(A_1|B)+P(A_2|B)+...+P(A_n|B)
    $$

乘法公式

条件概率的乘法公式是:

P(AB)=P(B)⋅P(A|B)

这个公式说明了事件 A 和事件 B 同时发生的概率等于事件 B 发生的概率乘以在 B 发生的条件下 A 发生的概率。

说明:以上公式可以理解为分几步走,第一步B发生的概率,第二步在B发生的前提下A发生的概率。

补充:如果有A、B、C事件

P(ABC)=P(A)P(B|A)P(C|AB)

按照分几步走的逻辑:第一步A发生的概率,第二步在A发生的前提下B的概率,第三步在AB发生的前提下C的概率,相当于每一步都要以前一步作为发生条件。

2.9 全概率公式

假设事件 A1,A2,...,An 是样本空间 Ω 的一个完备事件组,即这些事件两两互斥,并且它们的并集是整个样本空间。如果我们想计算事件 B 的概率,可以使用全概率公式:

P(B)=P(B∣A_1)P(A_1)+P(B∣A_2)P(A_2)+...+P(B∣A_n)P(Bn)=\sum _{i=1}^{n}P(A_i)P(B|A_i)

计算某一事件的总概率,通过将其分解为多个互斥事件的条件概率之和。

2.10 贝叶斯公式

贝叶斯公式描述了在已知其他条件概率的情况下,一个条件概率的计算方法。贝叶斯公式是逆概率理论的核心,它允许我们根据已知的某些概率来更新我们对另一个概率的信念。

例如:感冒、肺炎、白血病的症状都是发烧,在已知病人发烧的情况下,来推理病人发病的原因。可以把感冒、肺炎、白血病理解为原因,发烧是导致的结果,由已知结果推理原因的方法就是贝叶斯公式的核心理论。

定义

如果事件 B1,B2,...,Bn是样本空间 Ω 的一个完备事件组,即这些事件两两互斥且它们的并集是整个样本空间,那么对于任意事件 A,贝叶斯公式可以表示为:

P(B_i∣A)=\dfrac{P(A∣B_i)P(Bi)}{P(A)}=\dfrac{P(AB_i)}{P(A)}

其中:

  • P(Bi∣A) 是在事件 A 发生的条件下事件 Bi发生的条件概率(后验概率)。

  • P(A∣Bi)是在事件 Bi发生的条件下事件 A 发生的条件概率(似然度)。

  • P(Bi)是事件 Bi发生的边缘概率(先验概率)。

  • P(A)是事件 A 发生的边缘概率(先验概率),可以通过全概率公式计算得出:

P(A)=∑i=1nP(A∣Bi)P(Bi)

说明:事件A理解为结果,在已知事件A的条件下,事件Bi发生的概率即为贝叶斯公式。

2.11 事件独立性

如果两个事件是独立的,那么一个事件的发生不会影响另一个事件发生的概率。

条件概率与独立性

如果事件 A 和事件 B 是独立的,那么事件 A 在事件 B 发生的条件下的条件概率 P(A∣B)等于事件 A 的先验概率 P(A):
P(A∣B)=P(A)

同样地,事件 B 在事件 A 发生的条件下的条件概率 P(B∣A)等于事件 B 的先验概率 P(B):
P(B∣A)=P(B)

由条件概率公式可知:
P(A|B)=\dfrac{P(AB)}{P(B)}=P(A)=>P(AB)=P(A)P(B)

定义

设 A和 B 是两个事件。如果满足以下条件,则称事件 A 和事件 B 是独立的:
P(AB)=P(A)⋅P(B)

其中:

  • P(AB)是事件 A 和事件 B 同时发生的概率(联合概率)。

  • P(A)是事件 A 发生的概率。

  • P(B) 是事件 B 发生的概率。

独立性的性质

  1. 对称性:如果 A 和 B 独立,那么 B 和 A 也独立。

  2. 传递性:如果 A 与 B 独立,且 B 与 C 独立,那么 A 与 C 独立(仅当这些事件的联合概率分布是乘性的)。

  3. 零概率事件:任何事件与零概率事件(P(A)=0)总是独立的。

  4. 对立事件:如果 A 与 B 独立,那么 A 与其对立事件

    \overline B

    也独立。

定理

1.P(A)>0,P(B)>0,A、B独立的充分必要条件是P(AB)=P(A)⋅P(B)

2.P(A)>0,P(B)>0,互不相容和独立不会同时出现。

证明:

如果A、B互不相容则P(AB)=0,而P(A)P(B)>0,所以A、B不独立

如果A、B独立则P(AB)=P(A)P(B)>0,所以P(AB)>0,从而A、B步互不相容。

2.11 伯努利模型

伯努利模型是一种基础的概率模型,它描述了一个随机试验只有两种可能结果的情况:成功或失败。在伯努利模型中,每次试验只有两个

可能的结果,通常称为成功和失败。这些结果用事件S和事件F来表示,其中S表示成功,F表示失败。伯努利模型的关键特点是每次试验的

结果是相互独立的,即前一次试验的结果不会影响后一次试验的结果,每次试验中成功的概率为p,失败的概率为1-p,并且这些概率对于

每次试验都保持不变。

伯努利模型在概率论、统计学和随机过程等领域中都有重要的应用。例如,在统计学中,可以使用伯努利模型来建立二元数据的模型,比

如用户是否购买产品、是否点击广告等。在风险分析中,伯努利模型可以用来描述某种事件的发生与否,比如是否发生事故、是否发生自

然灾害等。在金融数学中,伯努利模型可以用来模拟股票价格的上涨和下跌情况。

前置概念

  1. 伯努利试验

    • 伯努利试验是一种特殊类型的随机试验,其结果只有两种可能:成功或失败。

    • 伯努利试验的结果是二元的,通常用1表示成功,用0表示失败。

  2. n重伯努利试验

    • n重伯努利试验是指伯努利试验重复进行n次,每次试验都是独立的。

    • 在n重伯努利试验中,每次试验的成功概率相同,通常用p表示,失败概率为1-p。

定义

设试验成功的概率为 p(0<p<1),失败的概率为 1−p,如果在n重伯努利实验中,成功k次的概率参数为 p 的伯努利分布。

伯努利分布的概率质量函数(PMF)为:

P_n(k)=C_n^kp^k(1−p)^{n−k}

其中,k 是成功的次数,

C_n^k

是组合数,表示从n次试验中选择k次成功的不同方式。

上述公式也叫做二项概率公式。

该公式可以用于二项式的展开公式,如:

(a+b)^n

如果用二项概率公式展开:

(a+b)^n=C_n^na^n+C_n^{n-1}a^{n-1}b+C_n^{n-2}a^{n-2}b^2+...+C_n^0b^n

二.随机变量及其分布

1.定义

随机变量是一个从样本空间(所有可能结果的集合)到实数集的函数。样本空间中的每个结果都对应于随机变量的一个值。随机变量的值可以是离散的,也可以是连续的。随机变量通常用大写字母表示,如 X、Y 或 Z。

随机变量和事件的联系

定义事件

事件可以定义为随机变量取特定值的集合。一般用{X=?}表示。

例如,如果随机变量 X 表示掷骰子的结果,那么事件 "掷得奇数" 可以表示为 {X=1} 或 {X=3}或 {X=5}。

使用随机变量描述事件

随机变量的值可以定义复杂的事件。

例如,事件 "掷骰子的结果大于4" 可以表示为 {X>4},其中 X 是随机变量。

例如,掷硬币的结果为正面、反面,在数学中不方便描述,可以将正面映射为数字1,反面映射为0,那么事件"掷出正面"可以表示为{X=1},事件"掷出反面"可以表示为{X=0}。

概率分布

随机变量的概率分布描述了它取每个可能值的概率。这个分布可以用来计算事件的概率。在随机变量表示的事件前加上P来表示:P{X=?}或者P(X=?)。

例如,随机变量 X 的概率质量函数(PMF)或概率密度函数(PDF)可以用来计算 P(X=k) 或 P(a<X<b)。

2.离散型随机变量及其概率分布

离散型随机变量的特点

  1. 可数性:随机变量的取值是可数的,即有限个或可数无限个。

  2. 离散性:取值之间有“间隔”,不是连续变化的。

  3. 概率分布:每个取值都有一个特定的概率,且所有取值的概率之和等于1。

离散型随机变量的概率分布:

离散型随机变量的概率分布通常由概率质量函数(Probability Mass Function, PMF)描述。PMF 定义了随机变量每个可能取值的概率。

概率质量函数(PMF):

对于离散型随机变量 X,其概率质量函数为

P(X=x)

,其中 x* 是 X 可能取的值。PMF 满足以下条件:

  1. 非负性:对于所有的 x,有 P(X=x)≥0。

  2. 归一性:所有可能取值的概率之和等于1,即

∑_xP(X=x)=1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值