PyTorch学习笔记,2024年最新大数据开发插件化入门指南

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip204888 (备注大数据)
img

正文

c = torch.zeros(5, 3, dtype=torch.long)
print©



tensor([[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]])


同样地,还有 `torch.ones()`


4. 直接通过数据创建张量



d = torch.tensor([2.5, 3.5])
print(d) # tensor([2.5000, 3.3000])


5. 使用 numpy 中的数组创建 tensor



torch.tensor(np.array([[1, 2, 3], [4, 5, 6]]))


6. 通过已有的一个张量创建指定尺寸的新张量



x = d.new_ones(5, 3, dtype=torch.double)
print(x)



tensor([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]], dtype=torch.float64)


7. 通过已有的一个张量创建相同尺寸的新张量



利用randn_like方法得到相同张量尺寸的一个新张量, 并且采用随机初始化来对其赋值

y = torch.randn_like(x, dtype=torch.float)
print(y)



tensor([[-0.1497, -0.5832, -0.3805],
[ 0.9001, 2.0637, 1.3299],
[-0.8813, -0.6579, -0.9135],
[-0.1374, 0.1000, -0.9343],
[-1.1278, -0.9140, -1.5910]])


### 2.2 张量的属性


1. 获取张量的大小



print(y.size()) # torch.Size([5, 3])



> 
> `torch.Size` 函数本质上返回的是一个tuple,因此它支持一切元组的操作。
> 
> 
> 


2. 改变张量的形状



i = torch.randn(4, 4)

tensor.view()操作需要保证数据元素的总数量不变

j = i.view(16)

-1代表自动匹配个数

k = i.view(-1, 8)
print(i.size(), j.size(), k.size())



torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])


### 2.3 张量的运算


1. 加法操作


第一种加法操作



print(x + y)


第二种加法操作



print(torch.add(x, y))


第三种加法操作



提前设定一个空的张量

result = torch.empty(5, 3)

将空的张量作为加法的结果存储张量

torch.add(x, y, out=result)
print(result)


第四种加法方式



原地置换

y.add_(x)
print(y)



> 
> 注意:所有 `in-place` 的操作函数都有一个下划线的后缀,比如 `x.copy_(y),x.add_(y)`,都会直接改变 `x` 的值
> 
> 
> 


### 2.4 获取张量元素


1. 取出元素


如果张量中只有一个元素,可以用 `.item()` 将值取出,作为一个 python number(真实值)



n = torch.randn(1)
print(n)
print(n.item())



tensor([-0.3531])
-0.3530771732330322


2. 切片


用类似于Numpy 的方式对张量进行操作:



print(x[:, 1])



tensor([1., 1., 1., 1., 1.], dtype=torch.float64)


### 2.5 类型转换


Torch Tensor和Numpy array的转换



a = torch.ones(5)
print(a) # tensor([1., 1., 1., 1., 1.])


1. 将 Torch Tensor 转换为 Numpy array



b = a.numpy()
print(b) # [1. 1. 1. 1. 1.]


对其中一个进行加法操作,另一个也随之被改变



a.add_(1)
print(a)

tensor([2., 2., 2., 2., 2.])

print(b)

[2. 2. 2. 2. 2.]


2. 将 Numpy array 转换为 Torch Tensor



import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)
print(a)

[1. 1. 1. 1. 1.]

print(b)

tensor([1., 1., 1., 1., 1.], dtype=torch.float64)

np.add(a, 1, out=a)
print(a)

[2. 2. 2. 2. 2.]

print(b)

tensor([2., 2., 2., 2., 2.], dtype=torch.float64)



> 
> 注意:
> 
> 
> * 所有在CPU上的Tensors,除了CharTensor,都可以转换为Numpy array并可以反向转换
> * Torch Tensor 和 Numpy array共享底层的内存空间,因此改变其中一个的值,另一个也会随之被改变。
> 
> 
> 



> 
> 关于Cuda Tensor: Tensors可以用`.to()`方法来将其移动到任意设备上。
> 
> 
> * GPU:“cuda”
> * CPU:“cpu”
> 
> 
> 



x = torch.zeros(5, 3, dtype=torch.long)

如果服务器上已经安装了GPU和CUDA

if torch.cuda.is_available():
# 定义一个设备对象, 这里指定成CUDA, 即使用GPU
device = torch.device(“cuda”)
# 直接在GPU上创建一个Tensor
y = torch.ones_like(x, device=device)
# 将在CPU上面的x张量移动到GPU上面
x = x.to(device)
# x和y都在GPU上面, 才能支持加法运算
z = x + y
# 此处的张量z在GPU上面
print(z)
# 也可以将z转移到CPU上面, 并同时指定张量元素的数据类型
print(z.to(“cpu”, torch.double))



tensor([[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 1, 1]], device=‘cuda:0’)
tensor([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]], dtype=torch.float64)


## 3 Pytorch中的 autograd



> 
> 在整个 Pytorch 框架中,所有的神经网络本质上都是一个autograd package(自动求导工具包),它提供了一个对 Tensors 上所有的操作进行自动微分的功能。
> 
> 
> 


### 3.1 torch.Tensor 介绍


`torch.Tensor` 是整个 package 中的核心类


* 如果将属性`.requires_grad` 设置为 `True`,它将追踪在这个类上定义的所有操作。
* 当代码要进行反向传播的时候,直接调用 `.backward()` 就可以自动计算所有的梯度(前提是属性`.requires_grad` 设置为 `True`)。
* 在这个Tensor上的所有梯度将被累加进属性 `.grad` 中。
* 如果想终止一个Tensor 在计算图中的追踪回溯(反向传播),只需要执行`.detach()`就可以将该Tensor从计算图中撤下,在未来的回溯计算中也不会再计算该Tensor。
* 如果想终止对整个计算图的追踪回溯,也就是不再进行方向传播求导数的过程,也可以采用代码块的方式`with torch.no_grad():`,这种方式非常适用于对模型进行 **预测** 的时候,因为预测阶段不再需要对梯度进行计算。


`torch.Function`是和`torch.Tensor` 同等重要的一个核心类,


* `torch.Function`和Tensor共同构建了一个完整的类, 每一个Tensor拥有一个`.grad_fn`属性,代表引用了哪个具体的 Function 创建了该Tensor。
* 如果某个张量Tensor是用户自定义的,则其对应的grad\_fn is None。


### 3.2 torch.Tensor 操作



不设置requires_grad

x1 = torch.ones(3, 3)
print(x1)

设置requires_grad

x = torch.ones(2, 2, requires_grad=True)
print(x)



tensor([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]])

tensor([[1., 1.],
[1., 1.]], requires_grad=True)


在具有 `requires_grad=True` 的Tensor x 上执行一个加法操作



y = x + 2
print(y)



tensor([[3., 3.],
[3., 3.]], grad_fn=)


打印 Tensor 的`grad_fn` 属性:



print(x.grad_fn) # x是我们自定义的

None

print(y.grad_fn) # y是通过加法计算出来的

<AddBackward0 object at 0x10db11208>


在Tensor上执行更复杂的操作:



z = y * y * 3
out = z.mean()
print(z, out)



tensor([[27., 27.],
[27., 27.]], grad_fn=) tensor(27., grad_fn=)


### 3.3 梯度Gradients




**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注大数据)**
![img](https://img-blog.csdnimg.cn/img_convert/b116d4a396244909dcf9f9004379cd61.png)

**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

`
z = y \* y \* 3
out = z.mean()
print(z, out)

tensor([[27., 27.],
        [27., 27.]], grad_fn=<MulBackward0>) tensor(27., grad_fn=<MeanBackward0>)

3.3 梯度Gradients

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注大数据)
[外链图片转存中…(img-p2iWZ267-1713319640647)]

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值