在教师-学生模型(Teacher-Student Model)中,EMA(指数移动平均)常用于教师模型的参数更新,以增强教师模型的稳定性并帮助学生模型更好地学习。具体来说,EMA 方法通过以下步骤应用于教师-学生模型:
1. 基本流程
- 教师模型:教师模型的参数通过 EMA 方法更新,而不是直接通过梯度下降更新。
- 学生模型:学生模型正常训练,通过反向传播更新其参数。
通过 EMA 更新教师模型的参数,使其更加平滑,提供更稳健的知识。这种教师模型通常被称为缓慢进化的教师(Slow-Moving Teacher),因为其参数变化较慢,更加稳定。
2. EMA 更新公式
假设学生模型的当前参数为 θ student \theta_{\text{student}} θstudent,教师模型的参数为 θ teacher \theta_{\text{teacher}} θteacher。那么教师模型的参数更新公式为:
θ teacher t = α ⋅ θ teacher t − 1 + ( 1 − α ) ⋅ θ student t \theta_{\text{teacher}}^{t} = \alpha \cdot \theta_{\text{teacher}}^{t-1} + (1 - \alpha) \cdot \theta_{\text{student}}^{t} θteachert=α⋅θteachert−1+(1−α)⋅θstudentt
其中:
- α \alpha α 是平滑系数,常取值在 0.99 到 0.999 之间。
- 每次迭代时,教师模型的参数不会直接使用学生模型的当前参数,而是采用 EMA 更新,以减小训练过程中的噪声。
3. 训练过程
在训练过程中,学生模型基于教师模型输出的预测进行学习(比如在知识蒸馏中学生学习教师的软标签或中间特征)。具体步骤如下:
- 初始化:将教师模型的参数初始化为学生模型的初始参数。
- 训练迭代:
- 学生模型前向传播:学生模型利用当前数据前向传播,计算损失,并更新自身参数。
- 教师模型 EMA 更新:根据学生模型的当前参数和 EMA 公式,更新教师模型的参数。
- 指导学习:教师模型的输出作为指导,学生模型根据教师模型的预测进行知识学习(通常通过软标签或中间特征来传递知识)。
4. 优势
- 模型平滑:EMA 更新的教师模型参数平滑且稳健,为学生模型提供稳定的指导信号。
- 防止过拟合:由于 EMA 的缓慢更新特性,教师模型能够更好地反映数据的整体分布,减少学生模型过拟合到噪声样本的风险。
- 提高模型效果:实验表明,使用 EMA 更新的教师模型可以显著提升学生模型的性能,尤其在半监督学习和自监督学习中,EMA 带来的效果尤为明显。