CUTLASS学习资料汇总 - CUDA矩阵乘法库

CUTLASS简介

CUTLASS (CUDA Templates for Linear Algebra Subroutines) 是NVIDIA开发的一个CUDA C++模板库,用于在NVIDIA GPU上实现高性能的矩阵乘法(GEMM)和相关计算。它提供了灵活的抽象和可复用的软件组件,可以用来构建自定义的高性能CUDA核函数。

CUTLASS的主要特点包括:

  • 支持多种精度的混合计算,包括FP16、BF16、TF32、FP32等
  • 针对NVIDIA Tensor Core进行了优化
  • 提供了分层的软件抽象,可以灵活地组合不同的计算原语
  • 性能可以达到接近cuBLAS的水平
  • 开源,可以自由使用和定制

入门资料

  1. CUTLASS GitHub仓库

    官方代码仓库,包含完整源码、文档和示例。

  2. CUTLASS快速入门指南

    介绍如何编译和运行CUTLASS,适合初学者。

  3. CUTLASS功能概览

    总结了CUTLASS支持的各种操作和功能。

  4. CUTLASS设计文档

    详细介绍了CUTLASS 3.x版本的设计理念。

  5. GEMM API文档

    解释了CUTLASS 3.x的GEMM模型和C++模板概念。

代码示例

CUTLASS提供了丰富的SDK示例,展示如何使用CUTLASS模板实现基本计算。一些值得关注的示例包括:

性能分析

CUTLASS提供了一个命令行性能分析工具,可以用来测试不同配置下GEMM和卷积核函数的性能。

学习资源

  1. GPU Technology Conference 2018演讲

    介绍了CUTLASS的基本结构和设计理念。

  2. Developing CUDA Kernels with CUTLASS

    讲解如何使用CUTLASS开发高效的CUDA核函数。

  3. CUTLASS: Python API and NVIDIA Hopper

    介绍了CUTLASS最新的Python API和对Hopper架构的支持。

通过以上资料,开发者可以全面了解CUTLASS的功能和用法,为开发高性能GPU线性代数库打下基础。CUTLASS作为一个开源项目,也欢迎社区贡献代码和反馈意见,共同推动GPU计算技术的发展。

文章链接:www.dongaigc.com/a/cutlass-learning-resources-cuda-matrix-multiplication

https://www.dongaigc.com/a/cutlass-learning-resources-cuda-matrix-multiplication

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值