Coord
Coord是一个基础数据类型,在cutlass用的很多,有必要掌握清楚,该类型主要使用场景如下:
- 本质就是一个vector。
- using stride=coord<2>使用方式, 保存一个tensor不同维度之间的步长,这样讲不太好理解步长,其实就是leading dimension,这里举两个例子:
- 比如一个数据大小是[N,C,H,W],那么就有3个步长,分别对应[ W, HW, CHW], 至于为啥是这个顺序我也不知道,估计是约定俗成的。理解步长其实就是在内存中,N0距离N1的长度是CH*W。
- 再举一个例子,比如一个矩阵是[H,W], 假如是按照行优先存储的,那么stride就是W, 说人话就是在实际内存中,原始数据坐标[0,0]和[1,0]在内存中的距离是W。
template <int Rank_, typename Index_ = int, typename LongIndex_ = int64_t >
struct Coord
{
// 一般要把模板中的形参类型转为本地使用(如果继续往下传播则不用,后续有其他例子可以参考),这个要养成良好编程习惯,形参尾部加下划线
static int const kRank = Rank_; //常量的话加k,这里不会有具体地址,如果想在运行中 访问这个数据,需要在类外给一个定义
using Index = Index_; //类型的话使用using,这个默认值按理说最好给unsigned, 毕竟步长为负数感觉不存在,但是这个vector, 后续还有其他用处,所以要灵活一些,默认给个int
using LongIndex = LongIndex_;
//成员变量
Index idx[kRank]; // 作为stride这里如果是nchw的coord, 那么idx[3]={w,hw,chw}
// 成员函数&