慧创近红外脑功能成像装置NirSmart的高灵敏度技术优势,可助力实现对双侧额叶、颞叶、顶叶、枕叶的同步高精准检测。
近红外脑功能成像(fNIRS)作为一种新型无创脑功能监测技术,凭借其便携性、抗运动干扰及成本优势,在临床医学和脑科学研究中具有重要价值。然而,在多种场景的数据采集过程中,fNIRS不可避免的受到各种因素影响,导致部分脑区信号失真甚至失效,严重制约数据利用率。开发有效的信号重建方法对提升fNIRS技术的临床应用与科研效能具有重要意义。
北京师范大学认知神经科学与学习国家重点实验室牛海晶团队在《Artificial Intelligence Review》期刊(中科院SCI TOP期刊)发表题为 “Reconstructing damaged fNIRS signals with a generative deep learning model”的研究论文,为fNIRS脑成像数据高效使用提供重要策略。
发表期刊: Artificial Intelligence Review
发表时间: 2024.12.20
影响因子: 11.7
使用设备: 慧创NirSmart
该研究采用近红外脑功能成像(fNIRS)技术,利用生成深度学习模型重建受损信号,以提高数据质量。
01 背 景
近红外脑功能成像(fNIRS)是一种新兴的非侵入性脑成像技术,通过发射近红外光并检测光强衰减来测量大脑功能活动。其具有便携性、低环境要求和易于数据采集等优点,广泛应用于认知科学、临床医学和脑机接口研究。然而,fNIRS信号常因接触不良、运动伪影或生理噪声等问题导致信噪比低或信号丢失,影响数据可用性。因此,开发一种有效恢复受损fNIRS信号的方法对于提高数据利用率和推动临床诊断及脑科学研究具有重要意义(图1-3)。
图1 实验设置
图2 多尺度时间模型总体框架
图3 缺失数据结构示意图
02 方 法
该研究提出了一种基于生成深度学习的多尺度时间模型,用于恢复受损的功能性近红外光谱成像(fNIRS)信号。该方法通过整合多尺度卷积层、门控循环单元(GRU)和线性回归分析,捕捉fNIRS数据的时间序列中的时空变化(图4)。
图4 多尺度卷积示意图
模型训练使用了健康老年人的静息态fNIRS数据集,并通过数据增强方法模拟受损信号,以提高模型对缺失数据的重建能力。实验结果表明,该模型在单通道和多通道受损情况下均表现出色,能够准确重建受损信号(平均相关系数为0.80±0.14),并保持功能连接矩阵的一致性。此外,模型在儿童和成人数据上也展现出良好的泛化能力(图5-9)。
图5 单通道重建及相关性评价示意图
图6 单通道重建的功能连接评估示意图
图7 模型在空间非相邻多通道受损情况下的信号重建结果示意图
图8 模型在空间相邻多通道受损情况下的信号重建结果示意图
图9 模型在成人和儿童组空间非相邻多通道受损情况下的信号重建结果示意图
03 结 果
在研究结果表明,提出的多尺度时间模型在恢复受损fNIRS信号方面表现出色。在单通道受损情况下,模型重建的信号与原始信号平均相关系数达0.80±0.14,且能有效保持功能连接矩阵的一致性(相关系数为0.93)。在多通道受损情况下,无论是空间上相邻还是非相邻的通道,模型均能保持较高的重建准确性和功能连接一致性,相关系数均超过0.75。此外,模型在不同年龄段和通道配置的数据集上展现出良好的泛化能力,为临床诊断和脑科学研究提供了高效的数据恢复方法。
04 结 论
该研究通过多尺度时间模型成功重建了受损的fNIRS信号,重建信号与原始信号高度相关,并保留了功能连接关系。模型在单通道、空间相邻多通道和空间非相邻多通道受损情况下均表现出色,且在不同年龄段和通道配置的数据集上具有良好的泛化能力。该方法为临床诊断和脑科学研究提供了高效的数据恢复工具,扩展了神经科学研究的工具和视角。然而,研究未充分考虑头动噪声去除方法的影响,也未涉及任务态数据的分析,未来需进一步优化模型以适应不同噪声处理方法,并探索其在静息态和任务态下的性能。