《Context Encoding for Semantic Segmentation》论文笔记

本文探讨了在语义分割中,如何利用全局上下文信息提高CNN特征表达能力。通过引入改进的channel-wise attention——Enc模块,结合SE损失,增强了特征的表达力,尤其在小目标识别上表现出优势。实验在PASCAL-Context和PASCAL-VOC上取得51.7%和85.9%的mIoU。同时,通过在CIFAR-10数据集上的对比,证明了Enc模块的有效性。
摘要由CSDN通过智能技术生成

参考代码:PyTorch-Encoding

1. 概述

导读:在这篇文章中研究了CNN特征图的全局上下文信息对于分割的影响,文章指出像之前工作中通过增加CNN网络层数感受野或者使用膨胀卷积,那么这样就能很好提取全局的上下文语义信息么?对此文章借鉴了channel-wise attention的思路对特征图进行优化,而对于目标分割任务(或者分类任务)提出了基于attention机制的Enc模块,使用attention的方式(编码器不同)增强特征的表达(Context Encoding Module)。此外对于传统上分割损失存在的偏心眼儿情况(对小目标不是很友好),在Enc模块基础上增加了基于GT像素类别先验监督的SE损失(与分类区域大小无关只与类别相关),进而引导更具表达能力特征的生成。在文章的方法也取得了不错的效果:PASCAL-Context和PASCAL-VOC上51.7% 和85.9%的mIoU。同样适用文章的方法在CIFAR-10数据集上只适用14层的卷积却获得了与更大体积(10倍)模型类似的结果,说明在依据GT类别来优化特征的生成还是挺有用的。

2. 方法设计

2.1 网络结构

文章的网络结构见下图所示:
在这里插入图片描述
这里是以ResNet的backbone基础在stage3和stage4上使用膨胀卷积和Enc模块(附带SE损失),之后再接一个分割头完成分割任务。

2.2 Enc模块

文章提出的Enc模块其详细结构见下图所示:

在这里插入图片描述
编码部分:
这部分可以看作是在原有channel-wise attention基础对编码器进行了改进而来,于输入的特征图 f ∈ R C ∗ H ∗ W f\in R^{C*H*W} fRCHW的,那么在channel维度进行切片可以得到数据 X = { x 1 , … , x n } ,   N = H ∗ W X=\{x_1,\dots,x_n\},\ N=H*W X={ x1,,xn}, N=HW,之后文章定义了 K K K个codewords D = { d 1 , … , d K } D=\{d_1,\dots,d_K\} D=</

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值