MGMap:Mask-Guided Learning for Online Vectorized HD Map Construction

本文探讨了如何通过结合栅格化描述改进向量化表示的性能,包括增加感受野、利用实例分割信息优化query构造和点回归细化。文章介绍了一种方法,如PV2BEV转换、多尺度特征融合和细化点处理,以及在Nuscenesval数据集上的实验结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考代码:MGMap

动机与出发点

地面元素的栅格化表示和向量化表示两者的优劣是分明的。栅格化描述更符合实际几何结构特征,但是缺少直接点输出特性;向量化描述直接输出元素点坐标,但是缺少对全局和局部细节的约束能力,导致“蚯蚓线”的情况。

之前的一些算法诸如MapVRGeMapHIMapP-MapNet尝试从各种维度去解决向量化描述的缺点,但其实核心的一点便是在向量化描述下如何利用好栅格化描述的信息(栅格化描述在实际量产中是已被验证的),这样有了栅格化作为性能的baseline,再从向量化维度去提升性能上限。这篇文章结合栅格化描述从如下维度去提向量化描述的性能:

  • 1)感受野:由于地面元素多是跨越大半BEV空间,需要有类似FPN这样的结构去增大感受野和融合不同尺度的特征
  • 2)栅格化信息定义query与优化:使用实例分割的栅格化信息与BEV特征构造inst-query(做到区分实例和隐式编码栅格信息),再与可学习point-query构建hybrid-query,逐级迭代优化
  • 3)points回归精细化处理:以迭代优化后的点作为锚点按照矩形宽度 d d d做RoiAlign截取特征,这个特征编码了语义分割的栅格化信息,从而做精细化单点优化

这篇文章在query构造阶段point点refine阶段引入栅格化信息:

  • 1)第一个阶段相当于每个inst对BEV特征做了cross-attn,attn-weight就是分割概率,以此来引入栅格化信息
  • 2)第二个阶段将语义分割进行编码作为栅格化信息表达,以点对齐做RoIAlign实现点的精细化回归

引入栅格化信息之后跟baseline方法进行比较,见下图:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值