多元线性回归解析解

数学推导

基本概念

在整个线性回归的学习中,求得一组最优的权重是我们的目的。

权重W是一维向量,记作W=[w1 w2 .... wn].一般的,权重为n行的列向量。

特征X是一维向量,记作X=[x1 x2 x3 .....xn],一般的,特征为n行的列向量。

在二维空间中,我们有y = ax+b,现在,我们将其拓展到n维空间,则有y = w0 + w1x1 w2x2 +.....+wnxn,其中,w0称为偏置。整体记作y = (w.T)X + ε

中心极限定理

中心极限定理是概率论中随机变量分布渐进于正态分布,而ε服从正态分布。

最大似然估计(MLE)

给定一个概率分布,已知其概率密度函数或者概率质量函数f,以及分布参数θ,我们可以从这个分布中抽出一个具有n个值的采样,利用f计算其似然函数。记作

L(θ|x1,x2....xn) = f(θ)(x1,x2....xn)

即给定分布参数后出现样本组的概率。

其中,最常见的连续概率分布是正态分布

f(x|\mu ,\sigma ^{2}) = \frac{1}{\sqrt{2\pi \sigma ^{2}}}*e^{-\frac{(x-\mu )^{2}}{2\sigma ^{2}}}

所以正态分布的线性回归的最大似然为

L(\theta ) (\varepsilon1...\varepsilon m ) = f(\varepsilon 1....\varepsilon n|\mu ,\sigma ^{2})

假设误差服从正态分布,符合中心定理,将μ置零,同时σ为常数。事件相互独立,所以可以写成

\prod_{i=1}^{m}f(\varepsilon i|\mu ,\sigma ^{2}) = \prod_{i=1}^{m}\frac{1}{\sqrt{2\pi \sigma ^{2}}}*e^{-\frac{(\varepsilon i )^{2}}{2\sigma ^{2}}}

又因为\varepsilon i = \left | yi - \hat{y} \right | = \left | yi - W.Txi \right | = \left | yi - \theta .Txi \right |

带入得到

L(\theta ) = \prod_{i=1}^{m}\frac{1}{\sqrt{2\pi \sigma ^{2}}}*e^{-\frac{(yi-\theta .Txi )^{2}}{2\sigma ^{2}}}

我们要求的便是当L(θ)最大时所对应的θ*

argmaxL(\theta ) =argmax \prod_{i=1}^{m}\frac{1}{\sqrt{2\pi \sigma ^{2}}}*e^{-\frac{(yi-\theta .Txi )^{2}}{2\sigma ^{2}}}

对数似然函数

l(\theta ) = lnL(\theta ) = mln\frac{1}{\sqrt{2\pi }\sigma } - \frac{1}{2\sigma ^{2}}\sum_{i=1}^{m}(yi - \theta .Txi)^{2}

J(\theta ) = \frac{1}{2}\sum_{i=1}^{m}(h\theta (xi)-yi)^{2}

J(θ)称为损失函数,当其最小时,对应的θ为所求

解析解求法

因为J(\theta ) = \frac{1}{2}\sum_{i=1}^{m}(h\theta (xi)-yi)^{2}等价于一个长度为m的向量乘以他自己,但是向量相乘在矩阵中要为行向量乘列向量,所以要转置其中一个。

J(\theta ) = \frac{1}{2}(X\theta -y).T(X\theta -y)

根据转置的性质

得到J(\theta ) = \frac{1}{2}(\theta .TX.TX\theta - \theta .TX.Ty - y.TX\theta + y.Ty )

梯度

方向导数

设二元函数上有一点P(x0,y0),那么以P点为起的射线

x = x0 + t\cos \alpha

y = y0 + t\cos \beta

\alpha +\beta = \frac{\pi }{2}

\lim_{x\rightarrow 0}\frac{f(x0+t\cos \alpha,yo+t\cos \beta )-f(x0,y0)}{t} = \frac{\partial f}{\partial l}|(x0,y0)

f(x,y)在(x0,y0)可微,那么方向导数存在,\frac{\partial f}{\partial l}|(x0,y0) = \frac{\partial f}{\partial x}(x0,y0)\cos \alpha +\frac{\partial f}{\partial y}(x0,y0)\cos \beta

那么

\frac{\partial f}{\partial l}|(x0,y0) = (\frac{\partial f}{\partial x}(x0,y0),\frac{\partial f}{\partial y}(x0,y0))\cdot (cos\alpha ,\cos \beta )

\bigtriangledown f(x0,y0) = (\frac{\partial f}{\partial x}(x0,y0),\frac{\partial f}{\partial y}(x0,y0)),其中,\bigtriangledown f(x0,y0)记作梯度。

即梯度是某点下降最快的方向导数。

最优解

最优解一定是一个驻点,但驻点不一定是最优解,这时我们用Hessian矩阵的半正定来判断。

Hessian矩阵

Hessian矩阵是由目标函数在X处的二阶偏导数所构成的对称矩阵。

半正定:特征值全部大于等于0

正定:特征值全部大于0

J{}''(\theta ) = X.TX

这相当于把X中的元素平方相加,结果肯定大于等于0。所以目标函数的黑塞矩阵半正定,所以函数是凸函数,驻点即为最优解。

目标函数求导

矩阵求导的性质

\frac{\partial \theta .TA\theta }{\partial \theta } = 2A\theta

\frac{\partial \theta .TA}{\partial \theta } = A

\frac{\partial A\theta }{\partial \theta } = A.T

所以J{}'(\theta ) = X.TX\theta - X.Ty

令其等于0,得到

\theta = (X.TX)^{-1}\cdot X.Ty

至此,解析解求解完成。

代码实现

import numpy as np
import matplotlib.pyplot as plt


X1 = 2 * np.random.rand(100,1)#创建一百行一列的列向量
X2 = 3 * np.random.rand(100,1)
#这里的y是真实值,等于y_hat+error
y = 5 + 4*X1 + 3*X2 + np.random.randn(100,1)#error服从正态分布

X_b = np.c_[np.ones((100,1)),X1,X2]
print(X_b)
theta = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)
print(theta)

#使用模型进行预测
X_new = np.array([[0,0],
                 [2,3]])
X_new_b = np.c_[np.ones((2,1)),X_new]
print(X_new)
y_predict  = X_new_b.dot(theta)
print(y_predict)

可视化

fig = plt.figure()
ax3d = fig.add_subplot(projection='3d')
ax3d.plot(X1,X2,y,'b.')
x1 = X_new[:,0]
x2 = X_new[:,1]
Z = y_predict[:,0]
print(x1)
print(x2)
print(Z)
ax3d.plot(x1,x2,Z,color='black')
plt.show()

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值