通过解析解方式求多元线性回归最优解

本文详细介绍了如何通过最小二乘损失函数来求解多元线性回归的最优解,首先阐述了最小二乘损失函数,然后利用线性代数方法表示并推导出参数θ的解析解形式。接着探讨了如何通过驻点和梯度为0来找到这个解,并进一步讨论了如何判断该函数是否为凸函数,涉及到了黑塞矩阵和正定性的概念。
摘要由CSDN通过智能技术生成

一、最小二乘损失函数

二、把最小二乘用线性代数的方式来表示

三、推导出θ的解析解形式

把最小二乘看成是一个函数曲线,极小值(最优解)一定是个驻点,驻点顾名思义
就是可以停驻的点,而图中你可以看出驻点的特点是统统梯度为 0,

梯度:函数在某点上的切线的斜率

于是,我们把

 进行求导

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

allen wy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值