POMM-week4

单期模型 多期模型 连续时间模型
在连续时间模型里,会涉及到伊藤积分和布朗运动。
两个基本假设:完全市场和无套利

很多金融模型都是通过一系列的假设使得模型非常简单,便于数学处理,然后慢慢的增加条件,逐步与实际相符,来测试之前的模型是否有很大变化。

股票可以看做是到期日无限且执行价格为0的看涨期权。
对于保险而言,其定价可以由下式给出:
C(t)=Et[er(Tt)C(T)]
ertC(t)=Et[erTC(T)]
M(t)=ertC(t) ,即可得到:
martingale鞅
M(t)=Et[M(T)]
对于未来最好的预测即是今天的观测。将martingale翻译为鞅,鞅是套在马头上的皮带,对于套了鞅的马头朝向在下一时刻的最佳预测,即是马当前的朝向。
鞅源于公平赌博,也可以这样理解,根据当前信息对于未来值的最佳预测即是当前的信息下的值,即当前的信息无法增加对于未来值的信息量,当前值完全反映了当前所有的信息。
对于股票价格,在真实概率下,其不是一个鞅过程(若是鞅过程,那么对于股票未来的价格期望和今天的价格相等,但人们持有股票是预期未来价格能够上涨,否则就不会持有股票,因此今天的股票价格应低于未来期望的价格),而是在其他某些概率下。这些概率称作:martingale概率,或risk-neutral概率,或pricing概率。

replicating portfolio
Create two same payoffs in two different ways (buy option OR trade the underlying assets (i.e. stocks and risk-free asset)), then the two securities should have the same price. 否则存在套利。
期权定价用二叉树模型(而不是多叉树)来分析是因为仅有股票和无风险债券两种线性无关的资产来进行复制。

金融市场
1.有套利,即不存在风险中性方法
2.无套利,存在风险中性方法
2.1不完全市场,存在多种风险中性定价方法,即未定权益的状态数大于线性无关的资产数,即由资产构成的方程组存在无穷多组解。这些解都是可以接受的,例如bid/ask之间的差价。
2.2完全市场,存在唯一的风险中性定价方法,未定权益的状态数等于用于复制未定权益的线性无关的资产数,即相应方程组存在唯一解。
2.2.1使用价格等于未来收益的折现来定价
2.2.2使用偏微分方程PDE来定价

为了定价,需要找到用来补偿风险的价值,但对于每一个个体而言,其折现率可能不一致,同时个体的风险偏好程度无法量化。当满足完全市场和无套利的假设时,可以用另外一种方式来进行定价,即是风险中性定价。当找到了风险中性概率时,其当前价格即为期望(在风险中性概率)收益的折现(使用无风险利率?)。如果使用真实的概率,则对于每一个证券,其价格需要根据相应的风险进行调整。在风险中性概率下,所有资产的回报率均为无风险利率(?)
风险中性定价仅仅是一个用来决定“安全价格”的工具,通过风险中性定价得到的价格不存在套利。如果采用真实概率进行定价,每个参与市场的个体对于某一项资产未来上升或下降的概率是不一致的(事实上可能也没有人能够得到准确的真实概率),因此这样就可以将相同的资产以不同的价格出售给对真实概率有不同估计的人,中间人就可以获利,因此价格是“不安全”的。


1.资产定价第一基本原理
检验一个模型是否存在套利,可以等价于检验是否存在至少一个Equivalent Martingale Measures (EMM),即是否存在一组风险中性概率 Q ,使得未来的期望值和当前值相等。
根据套利的定义,当 X(0)=0 时,有 X(T)0 Pr(X(T)>0)>0 ,即表明存在套利。
当存在风险中性概率 Q 时,即 X(0)=EQ0[X¯¯¯(T)] 成立,这里的 X¯¯¯(T) X(T) 的折现。
此时若存在套利,则 EQ0[X¯¯¯(T)]>0 ,而此时 X(0)=EQ0[X¯¯¯(T)]>0 X(0)=0 矛盾,表明不存在套利。

2.资产定价第二基本原理
完全市场和无套利,可以得到存在唯一的EMM(即唯一的discount factor m )。当市场不完全时,处于最大值和最小值之间的价格都是无套利价格,即
minQEQ0[C¯¯¯(T)]C(0)maxQEQ0[C¯¯¯(T)]
所有的 C(0) 都是无套利价格。max和min之间的间隔可以用bid/ask买卖价格差异来解释,间隔越小,表明市场越完全(complete),例如NYSE。而间隔越大,表明市场越不完全。


二叉树(Cox-Ross-Rubinstein)模型
这里假定连续复利,且各期之间的时间差为 Δt
无套利条件为: d<erΔt<u
原来的无套利条件是 d<R<u ,这里 R=1+r ,当 Δt=1 r0 时,即有 erΔt1+rΔt=1+r=R

如果 M(t)=Et[X] 是一个martingale,对于 s<t<T ,有
Es[M(t)]=Es[Et(X)]=Es(X)=M(s)
表明当前时刻 s 对于未来的期望,即为该时刻s的值。有了这个条件之后,可以在二叉树模型中反向计算,即根据未来时刻的回报来计算当期价格。
这里用到了law of iterated expectations,即 Et(X)=Et[Et+1(X)] ,现在对于更远未来的预测,等于现在 对于 未来时刻对于更远的未来预测 的预测。The law of iterated expectations says that the investor can never gain a more precise forecast of X by conditioning on more specific information (I2), if the more specific forecast must itself be forecast with the original information (I1).(?)


美式期权
考虑一个在 τ 时刻执行,支付 g(τ) 的美式期权
无套利的美式期权价格为:
A(t)=maxtτTEQt[er(τt)g(τ)]
完全市场中,无风险中性概率 Q 唯一。
τ=t+Δt,Δt0时,美式期权价格为:
A(t)=max[g(t),EQt{erΔtg(t+Δt)}]
可由此进行动态定价。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值