上下界(Upper/ Lower Bound)证明


上下界证明的方法

1.求解最大值&最小值

2.求极值逼近

3.不等式逼近


常用不等式

基本不等式

公式:1. a b ≤ a + b 2 \sqrt{ab}\le\frac{a + b}{2} ab 2a+b,当且仅当时取等号
变形

  1. 2 a b ≤ a + b 2\sqrt{ab} \le a + b 2ab a+b (当且仅当时取等号)
  2. 2 ≤ a b + b a 2 \le \frac{a}{b}+\frac{b}{a} 2ba+ab(a, b同号)
  3. a b ≤ ( a + b 2 ) 2 ≤ a 2 + b 2 2 ab \le (\frac{a+b}{2})^2 \le \frac{a^2+b^2}{2} ab(2a+b)22a2+b2 a , b ∈ R a,b \in R a,bR

二元均值不等式

2 1 a + 1 b ≤ a b ≤ a + b 2 ≤ a 2 + b 2 2 \frac{2}{\frac{1}{a}+\frac{1}{b}} \le \sqrt{ab} \le \frac{a+b}{2} \le \sqrt{\frac{a^2+b^2}{2}} a1+b12ab 2a+b2a2+b2
(调和均值≤几何均值≤算术均值≤平方均值)当且仅当a=b时等号成立


常用不等式

1 2 ( a 2 + b 2 ) ≤ a 2 + b 2 \frac{1}{2}(a^2+b^2) \le a^2+b^2 21(a2+b2)a2+b2
2 a b ≤ a 2 + b 2 2ab \le a^2+b^2 2aba2+b2 a b ≤ a 2 + b 2 2 ab \le \frac{a^2+b^2}{2} ab2a2+b2 a b ≤ ( a + b 2 ) 2 ab \le (\frac{a+b}{2})^2 ab(2a+b)2

2 a b ≤ a + b 2\sqrt{ab} \le a+b 2ab a+b a + b ≤ 2 ( a 2 + b 2 ) a+b \le \sqrt{2(a^2+b^2)} a+b2(a2+b2)


向量范数不等式

三角不等式 ( Triangle Inequality)

∥ A + B ∥ 2 ≤ ∥ A ∥ 2 + ∥ B ∥ 2 \Vert \mathbf{A}+\mathbf{B} \Vert_2 \le \Vert \mathbf{A} \Vert_2 + \Vert \mathbf{B} \Vert_2 A+B2A2+B2 ∥ A ∥ 2 − ∥ B ∥ 2 ≤ ∥ A − B ∥ 2 \Vert \mathbf{A} \Vert_2 - \Vert \mathbf{B} \Vert_2 \le \Vert \mathbf{A}-\mathbf{B} \Vert_2 A2B2AB2

相容性

∥ A B ∥ 2 ≤ ∥ A ∥ 2 ∥ B ∥ 2 \Vert \mathbf{AB} \Vert_2 \le \Vert \mathbf{A} \Vert_2 \Vert \mathbf{B} \Vert_2 AB2A2B2

常用不等式

λ min ⁡ ≤ ∥ A ∥ 2 \lambda_{\min} \le \|\mathbf{A}\|_2 λminA2 λ max ⁡ ≥ ∥ A ∥ 2 \lambda_{\max} \ge \|\mathbf{A}\|_2 λmaxA2


矩阵范数不等式

矩阵范数的性质

1. 齐次性 ∥ a A ∥ = ∣ a ∣ ⋅ ∥ A ∥ , ( a ∈ R ) \| a \mathbf{A}\| = |a| \cdot \| \mathbf{A}\|, (a \in \mathrm{R}) aA=aA,(aR)
2. 三角不等式 ∥ A + B ∥ ≤ ∥ A ∥ + ∥ B ∥ \| \mathbf{A}+ \mathbf{B} \| \le \| \mathbf{A} \| + \| \mathbf{B} \| A+BA+B
3. 相容性 ∥ A B ∥ ≤ ∥ A ∥ ⋅ ∥ B ∥ \Vert \mathbf{AB} \Vert \le \Vert \mathbf{A} \Vert \cdot \Vert \mathbf{B} \Vert ABAB

常用不等式

引理1. ∀ A ∈ R n × n \forall \mathbf{A} \in \mathbb{R}^{n\times n} ARn×n, ∥ A ∥ ≤ ∥ A ∥ F ≤ n ∥ A ∥ \| \mathbf{A} \| \le \| \mathbf{A} \|_F \le \sqrt{n}\| \mathbf{A} \| AAFn A
引理2. ∀ A ∈ R n × n \forall \mathbf{A} \in \mathbb{R}^{n\times n} ARn×n,
max ⁡ R e [ λ i ( A ) ] ≤ 1 2 λ max ⁡ ( A + A T ) ,   i = 1 , 2 , . . . , n , \max \mathrm{Re}[\lambda_i(\mathbf{A})] \le \frac{1}{2}\lambda_{\max}(\mathbf{A}+\mathbf{A}^{\mathrm{T}}), ~i=1,2,...,n, maxRe[λi(A)]21λmax(A+AT), i=1,2,...,n, min ⁡ R e [ λ i ( A ) ] ≥ 1 2 λ min ⁡ ( A + A T ) ,   i = 1 , 2 , . . . , n , \min \mathrm{Re}[\lambda_i(\mathbf{A})] \ge \frac{1}{2}\lambda_{\min}(\mathbf{A}+\mathbf{A}^{\mathrm{T}}), ~i=1,2,...,n, minRe[λi(A)]21λmin(A+AT), i=1,2,...,n, 其中 R e [ λ i ( A ) ] \mathrm{Re}[\lambda_i(\mathbf{A})] Re[λi(A)]表示 λ i ( A ) \lambda_i(\mathbf{A}) λi(A)的实部。

定理1. ∀ A ∈ R n × n \forall \mathbf{A} \in \mathbb{R}^{n\times n} ARn×n,
1 ) ∑ i = 1 n ∣ λ i ( A ) ∣ 2 ≤ ∥ A ∥ F 2 = ∥ A T ∥ F 2 1) \sum_{i=1}^{n} |\lambda_i(\mathbf{A})|^2 \le \|\mathbf{A}\|_F^2=\|\mathbf{A}^\mathrm{T}\|_F^2 1)i=1nλi(A)2AF2=ATF2 2 ) λ i ( A T A ) = ∥ A T A ∥ = ∥ A ∥ 2 = ∥ A T ∥ 2 . 2) \lambda_i(\mathbf{A}^\mathrm{T}\mathbf{A}) = \| \mathbf{A}^\mathrm{T}\mathbf{A} \| = \|\mathbf{A}\|^2=\|\mathbf{A}^\mathrm{T}\|^2. 2)λi(ATA)=ATA=A2=AT2.

优化领域的应用

引理3. 对于 ∀   退 化 矩 阵 W ∈ R n × n   &   实 对 称 矩 阵 E ∈ R n × n \forall ~ 退化矩阵\mathbf{W} \in \mathbb{R}^{n\times n} ~\& ~实对称矩阵\mathbf{E} \in \mathbb{R}^{n\times n}  退WRn×n & ERn×n,则下面不等式成立:
1 )   λ max ⁡ ≤ 1 2 λ max ⁡ ( W E W − 1 + ( W E W − 1 ) T ) 1) ~ \lambda_{\max} \le \frac{1}{2}\lambda_{\max}(\mathbf{W}\mathbf{E}\mathbf{W}^{-1} + (\mathbf{W}\mathbf{E}\mathbf{W}^{-1})^\mathrm{T}) 1) λmax21λmax(WEW1+(WEW1)T) 1 )   λ min ⁡ ≤ 1 2 λ min ⁡ ( W E W − 1 + ( W E W − 1 ) T ) 1) ~ \lambda_{\min} \le \frac{1}{2}\lambda_{\min}(\mathbf{W}\mathbf{E}\mathbf{W}^{-1} + (\mathbf{W}\mathbf{E}\mathbf{W}^{-1})^\mathrm{T}) 1) λmin21λmin(WEW1+(WEW1)T)

定理3. 对于 ∀   非 退 化 矩 阵 W ∈ R n × n   &   实 对 称 矩 阵 E ∈ R n × n \forall ~ \bf{非}退化矩阵\mathbf{W} \in \mathbb{R}^{n\times n} ~\& ~实对称矩阵\mathbf{E} \in \mathbb{R}^{n\times n}  退WRn×n & ERn×n,则下面不等式成立:
1 )   ∥ E ∥ ≤ 1 2 ∥ P E P − 1 + ( P E P − 1 ) T ∥ 1) ~ \| \mathbf{E} \| \le \frac{1}{2} \| \mathbf{P}\mathbf{E}\mathbf{P}^{-1} + (\mathbf{P}\mathbf{E}\mathbf{P}^{-1})^\mathrm{T} \| 1) E21PEP1+(PEP1)T 2 )   ∥ E ∥ F ≤ 1 2 ∥ P E P − 1 + ( P E P − 1 ) T ∥ F 2) ~ \| \mathbf{E} \|_F \le \frac{1}{2} \| \mathbf{P}\mathbf{E}\mathbf{P}^{-1} + (\mathbf{P}\mathbf{E}\mathbf{P}^{-1})^\mathrm{T} \|_F 2) EF21PEP1+(PEP1)TF

定理4. 对于 ∀ A ∈ R n × n \forall \mathbf{A} \in \mathbb{R}^{n\times n} ARn×n, 下面不等式成立:
1 )   1 2 ∥ A + A T ∥ F ≤ ∥ A ∥ F 1) ~ \frac{1}{2}\| \mathbf{A} + \mathbf{A}^\mathrm{T} \|_F \le \| \mathbf{A} \|_F 1) 21A+ATFAF 1 )   1 2 ∥ A + A T ∥ ≤ ∥ A ∥ 1) ~ \frac{1}{2}\| \mathbf{A} + \mathbf{A}^\mathrm{T} \| \le \| \mathbf{A} \| 1) 21A+ATA


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值