Si Stebbins Stack中的数学与魔术(二)——序列模型选择及存在性证明

上一期我们对Si Stebbins Stack的基本内容作了一些介绍,提了很多思考问题,今天我们就试着构建一下Si Stebbins Stack数学结构,并证明其存在性。传送门:

Si Stebbins Stack中的数学与魔术(一)——序列基本介绍

虽然你手里已经拿着一个Si Stebbins序列了,还要证明存在性干嘛?

不不,通过证明,并不是想知道是不是存在,而是找个机会,能探究其数学本质。

 

Si Stebbins Stack的数学结构

Si Stebbins Stack作为一个牌序,自然是依托在扑克牌所对应的数学结构的。那扑克牌我们应该用怎样的数学结构来描述呢?

 

我们不妨回忆一下进行数学建模活动需要的步骤:

 

对一个特定对象,为了特定的目标,根据其内在规律,做出必要的假设,运用适当的数学工具,得到一个数学结构。

 

首先搞清楚基本的对象和目标。

 

对象:扑克牌

 

目标:描述Si Stebbins Stack相关的性质

 

如果我们不考虑研究目标的话,那对扑克牌这个对象而言,就会像无头苍蝇一样,事无巨细,抓不到重点。比如,看到扑克牌是纸做的,开始研究压制工艺,印制花纹,历史沿革等等,那就完全和我们的研究方向跑偏了。我们在用扑克牌变魔术的时候,除了部分手法利用了扑克牌纸张那微妙的弹性以外,大部分的数学魔术在执行的时候,关心的都仅仅是每张牌代表一个对象,其上有点数和花色两个值。而且,除非是像搓麻将一样的洗牌时候,扑克牌像是一个散乱的集合,大部分时候,是以一个或多个牌叠的形式存在的。综上分析,我们关心的就两个点:

  1. 单张扑克牌本身的模型,是点数和花色,这是一个自然数和分类变量组成的元组;

  2. 扑克牌叠的模型,需要一个描述这些元素关系的数学结构,即序列;如果考虑其每张的独特性,就是排列;再考虑其在基本二切牌下的不变性,把牌叠看作是首尾相接的,也可以是环(cycle)。具体用哪个,我们后面根据问题再具体分析。

我们一边回答Si Stebbins序列定义中的几个问题,一边来确定到底用什么模型来恰到好处地建模我们的扑克牌叠。考察上面的给定Si Stebbins序列,可以显然地发现,这种序列一共有52个,即以这52张中的任意一张为开头所构成的。神奇的是,随便选择一个开头,按照这个+3(mod13) + 1和花色依次变化的规律,都能够恰好形成这52张的一个遍历。如果这52个开头只有若干个遍历存在,我认了这是巧合,但是全部成立一定意味着这里面还有更深的原理。也很容易发现,只要两个不同开头的序列中的某一张牌等,那以此为基础位置的前后扑克牌就都一样了,毕竟推导公式是一样的,而且还可逆。所以总结下来,这些不同的序列之间,其实就差一个相位。

 

还记得《序列周期性与魔术(一)——数学里的函数周期性》中说明的,每个扑克牌序列都是周期序列的说法吧?扑克牌叠上的位置索引的平移往复构成一个C52群,周期就是52次以后回到原点的群性质保证的。当然移动索引和反向移动整个牌叠是等价的,就好像时钟的时针走一个格,和把整个钟不包括时针逆时针走一格所得的时间指示结果是一样的一样。

 

这会儿,适合描述Si Stebbins Stack的数学模型已经呼之欲出了吧,它就是环,首尾相接后的迹。环上的相邻关系对应物理上的相邻关系和单元素底牌和顶牌之间关系集合的并集,这52个Si Stebbins Stack其实是这个环假想的52个head节点罢了,对应的即为扑克牌的顶牌是哪一张。不同的序列对应的就是这个索引平移或者整叠二切牌对应的不同相位的周期罢了,本质上在同一个结构内。为了解释这个问题,我们有周期性,同余,整除,循环群等等概念来共同辅助。

 

注意,二切牌在形态上好像和多切牌没有本质差别,但是,二切牌对两个牌叠排列的操作仅有一种可能,就是对换,也等价于多次单张顶牌移动到底的复合(这很好理解,把扑克牌叠首尾连起来,就会发现,二切牌等价于仅仅换了头指针,对这个环本身不作任何改变)。而多切牌则是各个牌叠任意排列,完全无法保证能否转化成基本的单张顶牌移动到底的复合,是一种表面类似,但完全不同类型的序列操作。

 

Si Stebbins Stack的存在性证明 

好了,这里已经完成了从1到n的说明,Si Stebbins序列的根本结构是一个C52群,群内52个状态都属于这个序列。接下来,我们说回从0到1,即为什么Si Stebbins序列按照这种方式来推导,一定存在?

 

在《序列周期性与魔术(四)——周期序列数学性质深入探秘》中,我们提到了一个定理,叫Reduced Residues Modulo A Prime,来自于《mathematical card magic》:

n是质数,正整数a和k都在范围[1, n – 1]内,因此他们都不是n的倍数,也和n互质,故ka也互质,自然也不是n的倍数。

 

有了这个性质以后,我们便可以证明我们需要的结论:

 

m是质数,k不是m的倍数,那么m张牌每次间隔k张循环取值,一定能不重复地恰好完成遍历。

 

证明:假设扑克牌的索引是0:(m - 1),起始牌索引为a,那么取m张牌的索引为:a, (a + k)(mod m), (a + 2k)(mod m), ……, a + (m - 1)k(mod m)。接下来想说明的是,这m个数互不相同。

 

用反证法,假设k = i和j,i != j时有a + ik == a + jk(mod m),那么m | (i – j)k,这里,我们不妨设k in [1, m - 1],否则令k’ = k(mod m),对遍历结果不造成任何影响。根据Reduced Residues Modulo A Prime的性质,不妨设i > j,那么(i – j)也在[1, m - 1]内,所以((i - j)k,m) = 1,原假设不成立,命题得证。

 

再一推导会发现,其实只需要(m,k) = 1这一个条件就足够了,m不一定要是质数。因为m | (i – j)不可能成立,自然就有m | (i - j)k不成立,这是欧几里得引理的逆否命题,自然成立。而m是质数的条件下,相当于要求k不是m的倍数就可以了,是个特殊情况。

 

具体到我们的Si Stebbins Stack,就数字而言,取的是m = 13,k = 3,显然满足条件,任意拿出一个13张连续牌都一定是一个13个点数的遍历,并且周期排布下去,因为m是质数,所以k取[1, 12]的整数都可以,都和它互质。甚至可以是对应相反数,表示倒着数而已。这一共12种数法都构成Si Stebbins Stack及其变种,而相反数的部分,恰巧和这12种一一对应,其绝对值和为13为一组,比如k = 3和k = - 10就是等价的。就点数而言,不妨设四个花色的点数值就是0,1,2,3,那么这里取m = 4,k = 1,你看这里m不是质数,但不影响结论成立。其实花色这里本不需要这么说明,4个花色,给定顺序排列,重复进行,本身就是按照特定顺序的遍历,能这么遍历是很显然的。还有,这种遍历恰好又是一个C4群的结构,回答了上一篇的问题说的,CHaSeD的排序和方块梅花红心黑桃等价的问题,因为他们都是C4群内的某个状态罢了。

 

注意,到目前为止,我们还只能说明,花色和点数,在扑克牌的序列上,各自具有4和13的周期性,但是,当二者组合在一起的时候,能否恰好遍历这52张牌,依然是个问号。

大家可以尝试着分析下,这个遍历的性质是否对于任意的序列长度和遍历周期都成立,能否举出反例,或者进一步发现它们的规律?

我们下一期来解开这个谜题。

老规矩,放几个后续将讲解的魔术视频:

视频1 Spell of Mystery

视频2 sly stebbins

我们是谁:

MatheMagician,中文“数学魔术师”,原指用数学设计魔术的魔术师和数学家。既取其用数学来变魔术的本义,也取像魔术一样玩数学的意思。文章内容涵盖互联网,计算机,统计,算法,NLP等前沿的数学及应用领域;也包括魔术思想,流程鉴等魔术内容;以及结合二者的数学魔术分享,还有一些思辨性的谈天说地的随笔。希望你能和我一起,既能感性思考又保持理性思维,享受人生乐趣。欢迎扫码关注和在文末或公众号留言与我交流!

扫描二维码

关注更多精彩

Si Stebbins Stack中的数学与魔术(一)——序列基本介绍

如果道具不能检查,那就毁了它!(二)——一般道具篇

利息浅谈(七)——万物皆投资

约瑟夫问题与魔术(十)——魔术《完全控制》

每一个魔术,都应该是一场直播的微电影!

点击阅读原文,往期精彩不错过!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值