视错觉与魔术(一)——经典回顾

本文讲述了作者从视错觉现象出发,分享了一些利用视觉错觉原理的震撼人心的魔术,如HofzinserAceProblem和Juan的油和水,强调了魔术设计中利用大脑认知漏洞的巧妙之处。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

早点关注我,精彩不错过!

在之前的魔术系列里我们从魔术的模型理论,讲到了《这到底是怎么想到的!!!》系列,聊到那些具体的魔术给我们的震撼。从这期起,我将大体从魔术的原理或效果的类型出发,分享给你一些曾经震撼过我,又让我回归例行思考之后依然觉得精美的魔术。

平日案牍劳形,这些魔术都来自儿时的记忆积累和日常感动的瞬间,可能并非最新最热的作品,但一定都是经历过时间检验的作品。不求完善和极致,只求纪念快要逝去的关于奇迹的感动。

从视错觉现象到魔术

今天我们聊一个轻松的门类,视错觉魔术。

视错觉是趣味数学中众多冷门又有趣的分支之一。记得很小的时候,政治刘老师花了半节课给我们放了很多视错觉的图片,有经典的大小错觉,弯曲错觉,正反成像错觉等,看得好不过瘾。其中印象最深的是那张十字网格中时不时出现的黑点,那种恐怖的心理感受到今天还记忆犹新。因为其他的图,经过反复观看,也能感受出大脑是怎么犯错的机理。但是那个若隐若现的不存在的像素黑点,实在是超出了认知的神奇。实在太神奇,先分享给你们看看:

图1 盲点错觉图

942a2ec5ab307e5382bc61b14ad3ea7f.png

后来又陆续看到过日本视错觉大师杉原厚吉关于镜像的很多作品,也很是惊艳。而当我还在少年时,我就曾想过这些视错觉的原理来设计一些魔术。但无奈素材稀少,魔术理论和思路也不成熟,一直没有合适的想法出现。其中一个最本质的问题是,这些都只是物理现象,而且只比较直白的,更像是实验,而很难包装成有情节的魔术流程。

直到后来研习的魔术越来越多,发现视觉错觉是在日常生活和科学研究中都十分常见的议题,也是魔术中的一个重要原理。其基本原理如同《魔术的逻辑(一)——魔术是怎么发生的?》中说的,人的大脑在认知对象,需要一个从视觉信号内容到虚拟模型的构建过程,而中间任何可能的错误都会导致认知和实际物理对象偏差,进而发生魔术现象。

可以说,凡是用来看的魔术,除了数学物理那类本身具有的特殊现象外,都一定程度利用了视觉错觉原理。

当然,这种原理不能多用,总用,密集用。因为大脑还具有反思和纠偏能力,一旦因为你剧情又拖沓又不吸引人,那难免大脑就有资源进行建模过程的反思和兴趣。轻则对魔术内容无感,重则秘密被破解。而少量地穿插在魔术方法和情节中时,视错觉又是很迷人的那种原理,只要别录视频,其令人的惊奇感是很强的。

后来,我发现有一类魔术,比如障眼法类的,说不上是严格的视错觉,但至少是所见非所得,用我们之前的《魔术表演的核心秘密(四)——障眼法的状态机描述》中提到的描述方法,就是人脑对所见构建的认知模型,由于其漏洞或模糊性,和真实有区别,进而构造出了魔术效果。这其中有一类还和障眼法有区别,因为它并没有真的遮挡什么,而是大大方方给你看几乎所有的角度,但是如果你不仔细放大回看,反复思考,你大脑经验的不足丝毫无法撼动这错误的认知。

今天我就分享几个这样神奇的魔术给你,分享那曾经给我的震撼。

Bizarre Prequel

视频1 Bizarre Prequel

这个作品我在《Hofzinser Ace Problem(3)——美到极致的流程》中曾经介绍过,但它不仅仅是个4Ace的流程,而是每一个步骤都有宝藏挖掘的神作。无论是对packet trick的藏移牌法的应用,还是整体结构的递归设计和最后ending的反转,都完美无缺。

其中,在两对Ace阶段的三明治表演部分,有一个用扑克做成的筷子夹牌,然后正反展示最后消失掉的部分。先不说这个筷子夹牌时带来的移牌的操作已经超出常规packet trick的建模范围,这个最后类似三明治的展示想法简直惊掉我的下巴,有点那种“这是怎么想到的?”的惊讶。

我不知道是怎么想到的,而只能马后炮地分析出这为什么可以成功。因为扑克牌处于两张夹一张的状态,且其中朝向还不一致时,一般人对这个场景是没有多少经验的。也就是说,短时间内,人脑也只能用几个浅层的特征来判断是否合理,然后就必须pass进入下一环节了。这里给观众呈现的应该是两张同样朝向的ace,夹住一张选牌,选牌朝向相反,因此翻面后,应该看到的是ace的反面和选牌的正面才是。而我们给观众呈现的,竟然是与之对称的一个图案,换了一个ace,选牌依然背面向上。一时间看去,好像朝向仍然有不同,而且我还再度确认了两张ace中的另外一张,就这么囫囵吞枣地以为差不多对了。而实际上用到的,却是一个D4群中的两个状态,翻面前后,Ace分别正面充当了夹牌和背面的被夹牌。

正是这大胆的想法和设计呈现,使得让观众轻轻抓住他认为的选牌,再轻轻拔掉去消失时候,是那样的充满了魔术感!

哎,要是魔术里能再多点这样令人惊喜的时刻就好了,很可惜,伟大的设计都是如此的稀少。

Juan的油和水

视频2 Juan的油和水

这个魔术我在上一讲《这到底是怎么想到的!!!》系列中已经介绍过,那疯狂的想法至今让我难以忘怀。其最核心的设计当然不在常规的packet trick的move,而是在几张牌依次竖着排列起来,仅仅露出牌角的呈现时,对于其背面的样子,观众是没有很清晰的经验的。现场推导又来不及,因此只能以大差不差仍然是个排列来作为特征判断无误。再加上旋转本身的技巧,这就使得这个秘密被深藏在不可挖掘的角落了。

下期还将给大家介绍一个近期非常火的视错觉类魔术,不要走开,精彩抢先看!

视频3 疯狂皮筋穿越

下期见!

9dd553d080110f045ab46eb89752f368.gif

我们是谁:

MatheMagician,中文“数学魔术师”,原指用数学设计魔术的魔术师和数学家。既取其用数学来变魔术的本义,也取像魔术一样玩数学的意思。文章内容涵盖互联网,计算机,统计,算法,NLP等前沿的数学及应用领域;也包括魔术思想,流程鉴赏等魔术内容;以及结合二者的数学魔术分享,还有一些思辨性的谈天说地的随笔。希望你能和我一起,既能感性思考又保持理性思维,享受人生乐趣。欢迎扫码关注和在文末或公众号留言与我交流!

31ad611b28790473521ad12033612786.gif

6aaa4f34afb32a5dc8077ee68f774899.png

4eaf3fccfd4e17c0ae357b4ff0081df0.jpeg

扫描二维码

关注更多精彩

你真的懂分数吗?(五)——概率与期望

De Bruijin序列与魔术(四)——De Bruijin序列的拓展结果

这到底是怎么想到的!!!

一道北大强基题背后的故事(七)——特征根公式的来龙去脉

用排列组合来编码通信(七)——《我的5/4张牌的预言》

c6c439f8bb0701d8f471327c3455a895.gif

点击阅读原文,往期精彩不错过!

根据提供的引用内容,可以得知这是道关于迷宫问题的题目,需要使用Java语言进行编写。具体来说,这道题目需要实现个迷宫的搜索算法,找到从起点到终点的最短路径。可以使用广度优先搜索或者深度优先搜索算法来解决这个问题。 下面是个使用广度优先搜索算法的Java代码示例: ```java import java.util.*; public class Main { static int[][] maze = new int[5][5]; // 迷宫地图 static int[][] dir = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}}; // 方向数组 static boolean[][] vis = new boolean[5][5]; // 标记数组 static int[][] pre = new int[5][5]; // 记录路径 public static void main(String[] args) { Scanner sc = new Scanner(System.in); for (int i = 0; i < 5; i++) { for (int j = 0; j < 5; j++) { maze[i][j] = sc.nextInt(); } } bfs(0, 0); Stack<Integer> stack = new Stack<>(); int x = 4, y = 4; while (x != 0 || y != 0) { stack.push(x * 5 + y); int t = pre[x][y]; x = t / 5; y = t % 5; } stack.push(0); while (!stack.empty()) { System.out.print(stack.pop() + " "); } } static void bfs(int x, int y) { Queue<Integer> qx = new LinkedList<>(); Queue<Integer> qy = new LinkedList<>(); qx.offer(x); qy.offer(y); vis[x][y] = true; while (!qx.isEmpty()) { int tx = qx.poll(); int ty = qy.poll(); if (tx == 4 && ty == 4) { return; } for (int i = 0; i < 4; i++) { int nx = tx + dir[i][0]; int ny = ty + dir[i][1]; if (nx >= 0 && nx < 5 && ny >= 0 && ny < 5 && maze[nx][ny] == 0 && !vis[nx][ny]) { vis[nx][ny] = true; pre[nx][ny] = tx * 5 + ty; qx.offer(nx); qy.offer(ny); } } } } } ``` 该代码使用了广度优先搜索算法,首先读入迷宫地图,然后从起点开始进行搜索,直到找到终点为止。在搜索的过程中,使用标记数组记录已经访问过的位置,使用路径数组记录路径。最后,使用栈来输出路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值