【没有哪个港口是永远的停留~ 论文简读】图卷积 GCN

论文:Graph Neural Networks: A Review of Methods and Applications  (GNN)

论文:T. N. Kipf, M. Welling, Semi-Supervised Classification with Graph Convolutional Networks(ICLR 2017) [Link, PDF (arXiv), code, blog](GCN)

 

前言

Graph Convolutional Network,简称GCN ,一般应用在推荐系统,交通预测等这种抽象问题的学习中,但是也有应用在CV领域的例子。所以在CV领域,我对于它的学习没必要过深,但还要了解原理思想,于是写下此文章。本文是我的理解过程的记录,所以是以问题形式推进的,笔不会掉,适合我的同类轻松观看。

 

解释

GNN

GCN属于GNN的分支,那么GNN又是什么呢?图神经网络,这个图不是拍出来的图像(a),而是特征关系图(b),图1

(a)欧几里得空间图像                         (b)非欧几里得空间图像  
图1

欧几里空间图像很好建立,看见的是啥就是啥,拍出什么就用什么,很简单。那么, 非欧几里空间图是怎么画出来的呢?又怎么用矩阵表示?模型输入输出?学的是啥?

答:

首先咋画出来的?如图2所示,图由节点V和线E组成,V = \left \{ v_i |i = 1 ... ... N \right \}E\left \{ e_{ij} |v_i,v_j \in \forall \right \} 。 图二是表示为 G(V,E),其中,N=6;V={1,2,3,4,5,6} ,E={(1,2),(1,5),(3,2),(5,2),(3,4),(4,5),(4,6)}

可以把输入数据根据节点关系画出图形,例如:铁路线路中,北京,天津,石家庄,沈阳,济南,河南就是图中的1,2,3,4,5,6  。(1,2)就是北京到天津的火车。

 

图2

用矩阵怎么表示这个图呢?邻接矩阵(Adjacency matrix)  连接矩阵是一个元素是bool型或权重值的 n\times n 矩阵 ,该矩阵定义如下:

很简单,就是字面意思,把是否有关系做个矩阵形式,如图3。

图3

还有度矩阵( Degree matrix)来表示,Dij为节点,度的对角矩阵,该矩阵定义如下:

很抽象,在对角位置元素的数值为该节点所有链接数如图4。

图4

 

还有邻域( Neighborhood),表示与某个节点有链接的点集,点1的邻域是{2,5},公式如下:没啥可说的就是集合而已

普通拉普拉斯矩阵,L来表示,公式:L=D−A

对称归一化的拉普拉斯变换:

L_{sys}=D^{-\frac{1}{2}}LD^{-\frac{1}{2}}=I-D^{-\frac{1}{2}}AD^{-\frac{1}{2}}

 

 

傅立叶变换+拉普拉斯矩阵传统傅立叶变换的基,就是拉普拉斯矩阵的一组特征向量。

f在图上的傅里叶变换

其中:

  1.  \hat{f}表示f的傅里叶变换
  2. U表示对称归一化的拉普拉斯矩阵

卷积+傅里叶变换:将上述公式推广到卷积

将正常卷积套上一层傅里叶

其中:

  1. f表示输入input
  2. g表示卷积核(权重)
  3. f*g表示一次卷积计算
  4. F(f)\cdot F(g)=\hat{f}\cdot\hat{g} 两个分别傅里叶变换再内积

简化上述公式:

$$\begin{center} \begin{aligned}f*g &=F^{-1}\{F(f)\cdot F(g)\} \\ &=F^{-1}\{ \hat{f}\cdot\hat{g} \} \\ &=U\{U^Tg \cdot U^Tf \} \\ &=U\{g_\theta \cdot U^Tf \} \\ &=Ug_{\theta}U^T \cdot f \end{aligned}\end{center}$$

 

其中: U^Tg整体看作可学习的卷积核,g_\theta来表示

上述公式计算量很大,往后的论文都是用近似来简化,其中最出名的就是下面的式子,也就是T. N. Kipf, M. Welling, Semi-Supervised Classification with Graph Convolutional Networks(ICLR 2017) [Link, PDF (arXiv), code, blog]

 

 

常用GCN公式

公式注释:

  1. \sigma为非线性激活函数
  2. D是度矩阵
  3. D^{-\frac{1}{2}}AD^{-\frac{1}{2}} +E =\hat{D}^{-\frac{1}{2}}\hat{A}\hat{D}^{-\frac{1}{2}}
  4. H^l:input数据
  5. W:权重

 

 

 

 

 

 

 

 

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值