证明:
根据正弦定理有:
s
i
n
α
B
D
=
s
i
n
B
A
D
s
i
n
β
C
D
=
s
i
n
C
A
D
s
i
n
(
α
+
β
)
B
C
=
s
i
n
B
A
C
=
s
i
n
C
A
B
\frac{sin \alpha}{BD}=\frac{sin B}{AD}\\ \frac{sin \beta}{CD}=\frac {sin C}{AD}\\ \frac{sin (\alpha+\beta)}{BC}=\frac{sinB}{AC}=\frac{sinC}{AB}
BDsinα=ADsinBCDsinβ=ADsinCBCsin(α+β)=ACsinB=ABsinC
则有:
s
i
n
α
A
C
=
s
i
n
α
×
s
i
n
(
α
+
β
)
B
C
×
s
i
n
B
=
s
i
n
B
A
D
×
B
D
×
s
i
n
(
α
+
β
)
B
C
×
s
i
n
B
=
s
i
n
(
α
+
β
)
×
B
D
A
D
×
B
C
s
i
n
β
A
B
=
s
i
n
α
×
s
i
n
(
α
+
β
)
B
C
×
s
i
n
C
=
s
i
n
C
A
D
×
C
D
×
s
i
n
(
α
+
β
)
B
C
×
s
i
n
C
=
s
i
n
(
α
+
β
)
×
C
D
A
D
×
B
C
\frac{sin\alpha}{AC}=sin\alpha \times \frac{sin (\alpha+\beta)}{BC\times sin B} =\frac {sin B}{AD}\times BD \times \frac{sin (\alpha+\beta)}{BC\times sin B} =sin(\alpha +\beta) \times \frac{BD}{AD \times BC} \\\\ \frac{sin\beta}{AB}=sin\alpha \times \frac{sin (\alpha+\beta)}{BC\times sin C} =\frac {sin C}{AD}\times CD \times \frac{sin (\alpha+\beta)}{BC\times sin C} =sin(\alpha +\beta) \times \frac{CD}{AD \times BC}
ACsinα=sinα×BC×sinBsin(α+β)=ADsinB×BD×BC×sinBsin(α+β)=sin(α+β)×AD×BCBDABsinβ=sinα×BC×sinCsin(α+β)=ADsinC×CD×BC×sinCsin(α+β)=sin(α+β)×AD×BCCD
代入原式中:
s
i
n
α
A
C
+
s
i
n
β
A
B
=
s
i
n
(
α
+
β
)
×
B
D
A
D
×
B
C
+
s
i
n
(
α
+
β
)
×
C
D
A
D
×
B
C
=
s
i
n
(
α
+
β
)
×
B
D
+
C
D
A
D
×
B
C
=
s
i
n
(
α
+
β
)
×
B
C
A
D
×
B
C
=
s
i
n
(
α
+
β
)
A
D
\frac{sin\alpha}{AC}+\frac{sin\beta}{AB}= sin(\alpha +\beta) \times \frac{BD}{AD \times BC}+sin(\alpha +\beta) \times \frac{CD}{AD \times BC}\\ =sin(\alpha +\beta) \times\frac{BD+CD}{AD \times BC}=sin(\alpha +\beta) \times\frac{BC}{AD \times BC}\\ =\frac{sin(\alpha +\beta) }{AD}
ACsinα+ABsinβ=sin(α+β)×AD×BCBD+sin(α+β)×AD×BCCD=sin(α+β)×AD×BCBD+CD=sin(α+β)×AD×BCBC=ADsin(α+β)
原题得证。