
先送大家一首歌吧,另外祝今天中考学子旗开得胜
导数之三角函数导数综合题型(1)
对于我来说,一开始接触三角函数的导数题简直是导数题的另类——求导觉得麻烦、放缩觉得奇怪,不过经过一些题目的练习之后,似乎有了一些思路,下面通过题目来展现
今天我想展示我对三角函数的主要理解,明天则是一些补充部分
做做吧,少年
做做吧,少年
做做吧,少年
(分割线是为了把题目和解析分开,因为不做一下题目,往往不能深入体会解析的妙处)
好,开始今天的解析:
今天题目的解析一看答案便能理解,所以答案将在最后放出,做完题目的人可以直接划到末尾去看答案,不过我想先在这里阐明一下我的观点
重要程度:(当然求导的基本功必不可少,虽然tanx这类函数在高考中不太可能会考)
画图以及求导
三角函数的有界性,单调性,周期性等函数特殊性质
放缩
基本上会这三点,我就有自信做对题目
画图
画图为什么要特殊强调,因为在我看来,做一道函数导数题不画一下图,便较难抓住其本质,虽然我们会画的图实在不多——一次、二次乃至三次函数,指数对数和一些简单的超越函数(如果你有总结的话,可以直接画出),三角函数等,但既然三角函数比较好画,尤其是导数题并不会考特别难画的三角函数,如果你能通过画图就能解决一些问题的话,那何乐而不为呢?(画图画图画图,重要的事情说三遍)
下面来道例题
极值问题我们之后会有专题,不过这不在今天的叙述重点以内,所以第一问自证——求两次导易证。
但第二道似乎会受第一道题目的惯性而尝试通过求导来解决问题,但如果认真观察原函数的话,其实可以把原函数分为两个函数,那么零点问题就可以转化为交点问题。
这个画图并不难,主要是通过三角函数的最大值和最小值处来确定大概图像,几何画板画图如图,易发现两个函数在原点处有交点,之后代一下π〡2和π容易由零点定理发现其区间有交点,那么两个交点已经找到,接下来只需证π到正无穷和(-1,0)处没有交点即可,π到正无穷只要证明三角函数的第二个高峰处(即5|2π处)在ln(x+1)下方即可(相信不难理解,因为函数通过画图就可以大概了解到两函数在π之后应该没有切线,那么若有交点则ln(x+1)必须穿过sinx的第二个高峰,同时ln(x+1)在x=2时便已经大于1,那么由三角函数有界性便可以帮忙证明ln(x+1)在π之后便一直在sinx的上方,原谅我这么啰嗦的叙述,想必你已经明白,画图确实能给人直觉),至于(-1,0),你可以由画图发现sinx应该是在ln(x+1)的上方,那么转化为证明sinx-ln(x+1)>0在(-1,0)上恒成立即可,之后就是求导、端点效应的事
啰啰嗦嗦说了这么一大堆,无非就是想说简单的图像分离和画图会相当直观,这个很基础,所以不要忽略画一画图所能带来的效用。

利用三角函数的特点
三角函数的特点其实在图像上便能明显地体现出来,也正是这些特点让画图变得轻松并使关注点很容易找到(正如上面说的k|2π的一些点),不过我想重点说明一下有界性和换元
今天的每日一题第二题
由上面,不妨画一下图,易知有三个零点,那么思路应该会比较清晰
但第二问就没那么友善了,相当于
cos(2sinx)是什么东西?这个几乎不可能画出来(当然我有几何画板,还是可以感受一下的)
不会画图,怎么玩?先别急着放缩,因为放缩是有条件的——sinx
可能你已经会证了,那我很高兴这一道题给了你一种新的思路——有时候三角函数可以换元试试,理清x到t对应关系即可(当然求零点的题目不建议这么做,因为对应关系实际上加大了难度,但不等式不妨试试这么来一下)
下面直接给答案(非原创,侵删)
解法很多,交给你们自己理解了(分参还是不分参、变形和放缩自己体会一下吧,解析思想还是很丰富的。)

放缩
先给出放缩的几个基本不等式吧。
但实际上我只见过第一个发挥过用处,第二个第三个有意者记一下吧。
这一模块对应的便是第一题了。
有一说一,这题第一问都有点麻烦。
当a=0和a=-π时几何画板画图如图(代a=0应该不难想,有其图像很容易想到应该要代a=-π),通过图像可能比较直观,显然a应该具有一定的周期性,以a=0而言,看上去只能往左移而不能往右移动(往右移一点点显然有交点),不过通过画图,你应该对于解析有更明确地认识了,我不想对解析有更多解释,不过确实收获一个新的放缩不等式
事实上,如果讲多一点的话,有
把这个记住,以后会说明
至于第二问,就到了我们放缩的重头戏了(原创证法)
解析是先求导证“唯一”,这个思路很直接,但既然找到了隐零点等式,我们完全可以把隐零点等式用一下
有
那么有
cosx0可视为sin(π|2-x0),那么由sinx
和-sinx0>x0
那么显然得证(有一说一,编这些公式好累啊)
答案的剩余部分相对麻烦一些
大部分三角函数的不等式都涉及放缩,由上你已经发现了,除了掌握一般的不等式外,掌握一下变形的技巧也是不错的选择。
我讲的内容实际上只是三角函数导数题目的一小部分,实际上每道题各有特点,要想有足够多的经验还得多去做题。
希望上面对你有所帮助。
今天就到这里,再见ヾ( ̄▽ ̄)Bye~Bye~
答案(只是上面的复现)
第一题
第二题

JCIA研习社,知识的搬运工,每天分享一个较偏较难的小知识点,愿对你有所帮助。
7.20 暑假每日一题第二天 DK