参考资料:https://cran.r-project.org/web/packages/agricolae/agricolae.pdf
1、AMMI模型
AMMI模型(additive main effects and multiplicative iteraction model,主效可加互作可乘模型)首先由Guach提出,是将主成分分析与方差分析相结合,在传统的基因型与环境的加性模型中,加入乘积形式的交互作用,不仅能分析交互作用的显著性还能估计出交互作用的特点及形态。AMMI模型重点研究基因型与环境的互作效应(G*E)对产量的影响,能较好的评价品种的稳定性和地点的鉴别力。
AMMI模型的理论知识重点参考【基于AMMI模型的品种稳定性分析_张泽】和【应用AMMI模型分析若干超级稻品种产量性状稳定性_陈霞】,如下:
AMMI模型是将方差分析和主成分分析相结合在一个模型中同时具有可加和可乘分量的数学模型,其方程形式为:
其中:是第i个基因型在第j个环境的第k次重复的单位面积产量,μ为产量总体平均值,为第i个基因型与总体均值的离差(即基因型主效应),为第j个环境与总平均的离差(即环境主效应),为第r个交互效应主成分轴(IPCA: Interaction Principal Component Axes)的特征值或奇异值(Singular value),代表交互作用平方和中可由该轴解释的部分。为第r轴的基因型特征向量值(Eigenvector value),为第r轴环境特征向量值。特征向量为标准向量(即长度为1)且不带单位,而λ的单位与产量的单位相同。N为保留在模型中的主分量轴的个数,即表示能包含大部分GEI(基因型与环境互作)交互作用信息所需要的乘积项数目。为提取N个IPCA轴后留下的残差(交互剩余项),为试验误差。乘式参数的方便取值为和,分别称为基因型和环境的“互作PCA得分”或“IPCA得分”,从它们的乘积直接就得出互作期望值,无需再乘奇异值λ。
2、R语言agricolae包
R语言的AMMI分析使用agricolae包,首次使用需要进行安装。
# 安装agricolae包
# 第一次使用时需安装,后面再使用时只需加载此包即可
install.packages("agricolae")
# 加载agricolae包
library(agricolae)
本人在第一次安装完成后,加载agricolae包是提示:“不存在叫‘AlgDesign’这个名字的程辑包”。需要再安装一次AlgDesign:install.packages("AlgDesign")。此后便可以正常加载agricolae包了。
3、AMMI分析
使用函数AMMI()函数对数据进行AMMI分析。使用模式如下:
AMMI(ENV, GEN, REP, Y, MSE = 0,console=FALSE,PC=FALSE)
其中,ENV为环境(试点);GEN为基因型;REP为重复;Y为产量(或其他目标性状);MSE为Mean Square Error;console为是否输出基础分析结果;PC为是否输出主成分。
EVN、GEN、REP、Y这四个参数不在解释。
(1)当数据集的产量数据为均值时(即无重复时),需要指定REP值和MSE值。如下:
# 加载数据
data(sinRepAmmi)
# 查看数据
head(sinRepAmmi)
# 指定重复数
REP<-3
# 指定MSE
MSE<-93.24224
model<-with(sinRepAmmi,AMMI(ENV,GEN,REP,YLD,MSE))
model$ANOVA
print(model$ANOVA,na.print="")
(2)console默认为FALSE,即运行AMMI()函数时不输出基础分析结果。若为TRUE,则输出基础分析结果。如下:
# 加载数据
data(plrv)
# 查看数据
head(plrv)
model<-with(plrv,AMMI(Locality,Genotype,Rep,Yield,console=TRUE))
(3)PC默认为FALSE,当为FALSE时,AMMI()函数输出的结果中model$PC显示为FALSE;当设置为TURE时,model$PC显示1主成分结果。如下:
model<-with(plrv,AMMI(Locality,Genotype,Rep,Yield))
model$PC
model<-with(plrv,AMMI(Locality,Genotype,Rep,Yield,PC=TRUE))
model$PC
4、案例展示与分析
因为双标图是基于主成分做出来的,此时就要注意主成分的贡献率:贡献率越高,双标图的解释结果就越可信。
(1)AMMI1双标图
AMMI1双标图便于直观地进行丰产和稳产的结合分析,横坐标是品种和试点的平均产量,纵坐标是品种和试点的IPCA1得分。纵坐标方向反映的是基因环境交互作用(GEI)的差异,图标点越接近IPCA1零值表示交互作用(GEI)越小,则品种稳定性越好。在横坐标方向上反映的是品种或试点平均产量的高低, 离原点越远(即数据点越靠右)品种或试点平均产量越高,丰产性越好。
AMMI1双坐标图只解析了IPCA1小部分的交互作用变异信息,据此推测品种稳定性并不全面。AMMI1双标图IPCA1通常对交互作用的解释率只有50-60%,有时甚至更低,所以AMMI1双标图对品种稳定性的解释力还是差一些的。故而对品种稳定性的分析可以作为可视化的参考,具体还要看稳定性参数Di。
由下图可知:品种4、14、9、28的丰产性均较好,但在稳产性方面品种9和28更好一些。而品种27的丰产性和稳产性均较差。
(2)AMMI2双标图
AMMI2双标图可直观地比较各品种在各试点的交互作用大小和分析互作模式,它的横坐标对应于品种和试点的IPCA1得分,而纵坐标对应于IPCA2得分。
在AMMI2双坐标图中,离坐标原点越近,则品种稳定性越好、试点(年份)判别力越差。另外,如果品种在试点图标与原点的连线或外延线上的垂直投影距离越大(即离坐标原点越远),则表明该品种与该试点的交互作用越大,反之亦然。如果投影落在连线上或穿过试点图标的外延线上,则该品种与该试点有正向交互作用,即该品种在该试点有一定的特殊适应性。如投影落在穿过原点的外延线上,则该品种与该试点有负交互作用,负交互作用意味着在该试点不利于该品种高产潜力的发挥。
此图描述的只是显示是基因与环境的互作,但是没有考虑到G,只是显示的GbyE。以AMMI2双标图为基础,需要重点关注IPCA1和IPCA2对互作效应的方差(平方和)解释率,如果大于70%,说明AMMI2双标图对互作效应的解释力较好,对品种稳定性和环境分辨力可以有较好的解释,但在哪个品种在哪些地方表现好等信息不太好查看。GGE双标图的出现,考察基因与环境互作,GGE更好。【AMMI模型双标图怎么看?_ammi分析-CSDN博客】
由此图可知,在试点的分辨力方面,LM-03与Hyo-02表现最好;LM-02表现最差。在品种的稳定性方面,品种20表现最好,其次是品种25和19,而品种27和14表现最差。