深度学习计算模型中“门函数(Gating Function)”的作用

门函数在深度学习中扮演重要角色,尤其在LSTM中,如遗忘门、输入门和输出门。它们通过类似现实生活中的门控制信息的流动,用以解决RNN的梯度消失问题。门控通过Sigmod函数控制信息的多少,例如,LSTM的状态更新和隐层节点输出都受到门控的影响。通过理解和类比,如家庭门控系统、水龙头和灯光调节器,有助于直观理解门函数的工作原理。
摘要由CSDN通过智能技术生成
/* 版权声明:可以任意转载,转载时请标明文章原始出处和作者信息 .*/

                                                     author: 张俊林



看深度学习文献,门函数基本上已经是你必然会遇到的一个概念了,最典型的就是LSTM,首先上来你就得过得去“遗忘门”“输入门”“输出门”这三个门。门函数本身是个独立概念,不过LSTM使用多个门函数来组合出一个带有状态记忆的计算模型而已。随着LSTM大行其道,各种计算模型开始在计算过程中引入门函数的概念,相信这些论文你也没少看,其实这也是一种研究模式,比如你看看你手头的模型,想想能不能把门函数引进来?会不会有效?也许能走得通。


RNN概念非常直接简单很好理解,但是看到了LSTM,估计不少人会挠头。学习LSTM刚开始看模型一般都不太容易立马搞明白到底这是怎么回事?其实很重要的原因一个是一下子引入了三个门,太多,另外一个是把记忆状态存储单独独立出来,所以看上去整个逻辑很复杂,其实你要是把门函数到底在干嘛搞清楚,那么LSTM的计算逻辑是非常清晰直接好理解的,跟RNN在概念上其实是一样的。所以首先得搞明白“门函数”们到底在干什么事情。


|猪家的神经网络门控系统


既然叫做门,那么我们可以和现实生活中的门的作用进行类比,比如我们在家里安装门是干嘛的呢?是个控制人进出房间的控制设备,门打开了,那么人就能通过,门闭上了,那么人就过不去,被锁在门外了,门要是半开半闭呢,如果不进一步推门的情况下,如果你体积小,可以侧着身子蹭进去。门打不打得开,打开能打多大,这是由谁来决定的?是由门控设备来决定的。什么是门控呢?我们都听说过“小红帽和狼外婆”以及“三只小猪”的故事,是吧?如果忘了可以看看下面图片辅助回忆一下:



在两个故事中,门控的作用就是狼字辈的不允许进入,妈妈和吃草的动物可以进,不过故事里的门控是通过室内的人或动物的观察来手动实现的,属于真正的“人工智能”或“猪工智能”。我们现在科技发达了,都使用刷卡或者刷脸的方式由门控设备来判断你是猪妈妈还是狼外婆,依此来决定是否让你进入。


假设现在我们帮小红帽或者三只小猪做个刷脸的门控设备,而且我们用目前流行度爆棚的神经网络来做这个门控,怎么做呢?


我们假设猪家其实是当地土豪,人称“豪猪”,有经济实力购买北京三环内学区房,而且房子还挺大,为了方便进出,在东南西北各个方向各有一个门,其神经网络建筑图如下:


当然,目前每个门还没有安装门控设施,所以每个门都可以随意进出,不论”X=猪妈妈

### 回答1: 特征选择函数是指通过设定阈值来选择特征的方法。在函数,当某个特征的值超过设定的阈值时,该特征会被选,否则会被排除。这种方法可以用于特征提取和降维,可以减少特征空间的维度,从而简化模型并提高训练效率。常见的函数有单一阈值和多个阈值,其多个阈值的方法如决策树可以更精细地选择特征。需要注意的是,函数的选择需要考虑数据集的具体情况以及实际需求,不同的函数会对特征选择结果产生不同的影响。 ### 回答2: 特征选择是机器学习的一项重要任务,其目的是从原始特征集选择出最具代表性和相关性的特征子集,以用于训练机器学习模型函数Gating Function)是特征选择常用的一种方法。 函数作用是根据某种指标对特征进行评估,然后选取评估结果大于某个阈值的特征作为选择结果。常见的函数有方差函数、相关系数函数和互信息函数等。 方差函数是根据特征的方差来评估其重要性。如果一个特征的方差较小,说明该特征的取值变化较小,对于区分不同类别的样本贡献较小,可以认为该特征不具有很强的区分能力,因此可以将其排除在特征子集之外。 相关系数函数是通过计算特征与目标变量之间的相关系数来评估特征的重要性。如果一个特征与目标变量之间的相关系数较小,说明该特征与目标变量之间的线性关系较弱,对于预测目标变量的能力较弱,因而可以将其排除在特征子集之外。 互信息函数是通过计算特征与目标变量之间的互信息来评估特征的重要性。互信息可以衡量特征和目标变量之间的相关性,如果一个特征的互信息较小,说明该特征与目标变量之间的关联较弱,对于预测目标变量的能力较弱,可以将其排除在特征子集之外。 在特征选择过程函数的使用可以根据具体的问题和数据集的特点进行选择。通过设置合适的函数及其参数,可以快速筛选出与目标变量相关性较强的特征,提高机器学习模型的训练效果和预测能力。 ### 回答3: 特征选择是机器学习一种常用的数据预处理技术,旨在从原始特征选择出对模型训练和预测有显著影响的特征,以提高模型的准确性和效率。而函数则是特征选择一种常用的评估指标。 函数通常基于特征的某种统计性质,将特征进行排序,并将具有较高统计指标的特征选入特征子集。常用的函数有卡方检验、信息增益、互信息等。 以卡方检验为例,它是一种统计方法,用于衡量两个分类变量之间的相关性。在特征选择,需要将原始特征和类别标签构建成一个列联表,然后计算每个特征与标签之间的卡方值。卡方值越大,表示特征与标签之间的相关性越强。 在进行特征选择时,可以设置一个限,只选取卡方值大于限的特征作为最终的特征子集。通过使用函数,可以将原始特征空间缩减为一个更小的特征子集,从而提高机器学习模型的训练和预测效果。 函数的使用在特征选择过程具有重要意义。通过选择适当的函数,可以提高特征子集的质量,剔除一些无关或冗余的特征。同时,函数也可以帮助我们理解不同特征对模型的重要性,从而更好地解释和解析模型的结果。 总之,特征选择函数是一种用于评估特征重要性的方法,能够帮助我们选择出对模型训练和预测有显著影响的特征子集,并提高机器学习模型的准确性和效率。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值