本人7年数学建模竞赛经验,历史获奖率百分之百。团队成员都是拿过全国一等奖的硕博,有需要数模竞赛帮助的可以私信我
本题主要涉及数据分析,数据预处理,数据压缩,机器学习回归预测等
1.问题背景与描述
赛题分析:这道题出的较好,考察面较多,难度循环渐进,相对C题是比较有层次的一道题
2.解题思路分析
2.1 问题一的分析
本题要求针对附件所给的矿山数据,建立数学模型。对A数据集经过变换让数据结果接近与数据B,并计算误差和分析误差来源。本题的核心是数据压缩模型,首先对附件中的A数据进行基础统计分析,特征提取。通过对数据分布状态进行分析比如数据的维度,是否高斯分布,利用箱线图分析法进行缺失值填充,异常值处理。数据变化算法包括线性变换和非线性变换,可以利用主成分分析,线性回归,支持向量机等算法对A数据进行变量压缩。并且比较压缩后数据与B数据的量化差异,比如
方误差(MSE)或均方根误差(RMSE)量化差异。
2.2 问题二的分析
问题二要求根据附件2的数据建立数据压缩模型。需要降维处理附件2的数据,计算压缩效率和还原后的准确度。压缩比和存储节省率是关键指标。降维方法可以选择PCA、自动编码器(Autoencoder)或者流形学习等方法。还原模型则需要将降维后的数据恢复,比如使用PCA的逆变换或者训练一个解码器。准确度要求MSE不超过0.005,所以需要验证还原后的数据是否满足这个条件。误差分析要比较原始数据和还原数据的差异,找出哪些部分的信息损失较大,可能的原因包括降维维度的选择不当或者模型不够精确。
要求在保证还原数据的准确度的前提下,尽可能地提高压缩效率,量化数据还原准确度以及压缩效率,建立多目标优化模型,通过遍历压缩模型和数据还原模型的参数来得到最优参数。
2.3 问题三的分析
问题3涉及去噪和标准化处理,然后建立X和Y的关系模型。数据预处理步骤应该包括去除异常值、标准化(比如Z-score标准化)和去噪,可能用小波变换或者Savitzky-Golay滤波。对于建立X与Y之间的数学模型可以通过建立机器学习多元回归模型或者随机森林回归等模型来量化数据之间关系。机器学习模型如随机森林、支持向量机等能够有效的给出特征变量X对于Y的影响。拟合优度用R²,统计检验需要做t检验或F检验,确保系数显著。误差分析要检查残差是否符合正态分布,是否存在异方差等问题。
这里可以多尝试一些机器学习回归模型,并且给出最优回归模型,一个好的误差分析是亮点
2.4 问题四的分析
本题主要是在问题三的基础上对回归模型进行优化,要求设计回归参数自适应算法。调整模型参数以最大化拟合优度,同时分析参数与拟合优度的相关性,计算平均预测误差,评估稳定性和适用性。对于参数自适应算法可以考虑用网格搜索、遗传算法或者梯度下降来优化参数。模型效果评估除了R²,还可以看交叉验证得分、均方根误差(RMSE),稳定性则通过多次运行参数调整的结果一致性来判断。如果使用网格搜索算法,可以考虑缩短步长,优化网格搜索给出完整的搜索过程以及误差分析过程。
本题核心在于回归参数自适应调整算法设计,主要目的是寻找最优回归参数
2.5 问题五的分析
本题的关键点在于降维处理高维数据X,然后重构到原始空间,再建立重构数据与Y的关系模型。评估需要包括泛化性、算法复杂度等。降维方法的选择。常用的有PCA、t-SNE、UMAP、自编码器等。但考虑到要重构到原始空间,PCA和自编码器可能更适合,因为它们是线性的或可逆的非线性方法。降维之后再重构数据有利于强化主要特征,去除高频噪声等,有利于后续的建模研究。进一步利用重构之后的数据建立回归模型,并且利用问题四建立自适应参数调整算法训练出最优回归模型。并且分析重构特征数据对于回归模型的效果提升,包括模型泛化以及误差分析,特征筛选等。
本问核心在于数据压缩之后重构,并且重构特征变量要能对回归模型有所提升
3.完整代码+结果分享
完整代码+结果已经完成,需要的自取
https://mbd.pub/o/bread/aZ6VlJZw