原文地址:http://deeplearning.net/software/theano/tutorial/conditions.html
IfElse vs Switch
- 两个操作符都在符号变量构建了条件。
IfElse
要提供一个布尔条件和两个变量Switch
要提供一个张量条件和两个变量。switch
是一个依次元素运算,所以比ifelse
更常用。- 而
switch
评估两个输出变量,ifelse
很懒并且只评估和条件有关的一个变量。
例子:
from theano import tensor as T
from theano.ifelse import ifelse
import theano, time, numpy
a, b = T.scalars('a', 'b')
x, y = T.matrices('x', 'y')
z_switch = T.switch(T.lt(a, b), T.mean(x), T.mean(y))
z_lazy = ifelse(T.lt(a, b), T.mean(x), T.mean(y))
f_switch = theano.function([a, b, x, y], z_switch, mode=theano.Mode(linker='vm'))
f_lazyifelse = theano.function([a, b, x, y], z_lazy, mode=theano.Mode(linker='vm'))
val1 = 0
val2 = 1
big_mat1 = numpy.ones((10000, 1000))
big_mat2 = numpy.ones((10000, 1000))
n_times = 10
tic = time.clock()
for i in range(n_times):
f_switch(val1, val2, big_mat1, big_mat2)
print('time spent evaluating both values %f sec' % (time.clock() - tic))
tic = time.clock()
for i in range(n_times):
f_lazyifelse(val1, val2, big_mat1, big_mat2)
print('time spent evaluating both values %f sec' % (time.clock() - tic))
在这个例子中,当一条件两输出IfElse
操作花费更小的时间(约switch的一半)。
time spent evaluating both values 0.6700 sec
time spent evaluating one value 0.3500 sec
除非使用linker='vm'
或linker=‘cv’
,ifelse
会计算两个变量并且和switch
有相同计算时间。即使连接器不是经常默认设置cvm
,它会在将来实现。
这里没有自动优化器会用一个ifelse
的广播标量替代swicth
,这往往不是更快的。
注意:如果你使用test values,然后所有IfElse的分支都会被计算。这很正常,因为Python的贪婪原则和test values的语义,当使用test vales时意味着所有都会被计算。当我们构建两个分支,他们都会在test values被执行。这不会产生任何改变当执行Theano的编译功能