统计学习

样本和总体:

研究中实际观测或调查的一部分个体称为样本(sample)

研究对象的全部称为总体。

总体方差:

定义为:\mu = \frac{​{\sum\limits_{i = 1}^N {​{x_i}} }}{N}         {\sigma ^2} = \frac{​{\sum\limits_{i = 1}^N {​{​{({x_i} - \mu )}^2}} }}{N}

 

样本方差:

          样本均值 :                          \bar x = \frac{​{\sum\limits_{i = 1}^n {​{x_i}} }}{n}

定义为:                            s_n^2 = \frac{​{\sum\limits_{i = 1}^n {​{​{({x_i} - \bar x)}^2}} }}{n}

或者(无偏样本方差):  {s^2} = s_{n - 1}^2 = \frac{​{\sum\limits_{i = 1}^n {​{​{({x_i} - \bar x)}^2}} }}{​{n - 1}}

 

标准差:

有偏:                \sigma = \sqrt {​{\sigma ^2}} = \sqrt {\frac{​{\sum\limits_{i = 1}^N {​{​{({x_i} - \mu )}^2}} }}{N}}

无偏:                s = \sqrt {​{s^2}} = \sqrt {\frac{​{\sum\limits_{i = 1}^n {​{​{({x_i} - \bar x)}^2}} }}{​{n - 1}}}

好处:使样本单位相同

公式之间的推导:

{\sigma ^2} = \frac{​{\sum\limits_{i = 1}^N {​{​{({x_i} - \mu )}^2}} }}{N} = \frac{​{\sum\limits_{i = 1}^N {(x_i^2 - 2\mu {x_i} + {\mu ^2})} }}{N} = \frac{​{\sum\limits_{i = 1}^N {x_i^2} - 2\mu \sum\limits_{i = 1}^N {​{x_i}} + {\mu ^2}\sum\limits_{i = 1}^N 1 }}{N}

      = \frac{​{\sum\limits_{i = 1}^N {x_i^2} - 2\mu \sum\limits_{i = 1}^N {​{x_i}} + N{\mu ^2}}}{N}= \frac{​{\sum\limits_{i = 1}^N {x_i^2} - 2\mu (N\mu ) + N{\mu ^2}}}{N} = \frac{​{\sum\limits_{i = 1}^N {x_i^2} - N{\mu ^2}}}{N}

      = \frac{​{\sum\limits_{i = 1}^N {x_i^2} }}{N} - {\mu ^2}

      {\color{Red} {\sigma ^2} = E({X^2}) - {[E(X)]^2}}

 

随机变量:

概率密度函数:

 

二项分布及其期望:

 

大数定律与中心极限定理之间的区别


    大数定律是说,n只要越来越大,我把这n个独立同分布的数加起来去除以n得到的这个样本均值(也是一个随机变量)会依概率收敛到真值u,但是样本均值的分布是怎样的我们不知道。
     中心极限定理是说,n只要越来越大,这n个数的样本均值会趋近于正态分布,并且这个正态分布以u为均值,sigma^2/n为方差。
      综上所述,这两个定律都是在说样本均值性质。随着n增大,大数定律说样本均值几乎必然等于总体均值。中心极限定律说,他越来越趋近于正态分布。并且这个正态分布的方差越来越小。直观上来讲,想到大数定律的时候,你脑海里浮现的应该是一个样本,而想到中心极限定理的时候脑海里应该浮现出很多个样本。


 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值