自动驾驶 规划综述

Motion Planning

What is motion planning?

规划的本质是:argmin_{x}f(x)

- 搜索问题

- “好”的规划就是一个目标函数:f(x),求最优解

Motion Planning的三个领域

  • Robotic Fields
    • 生成轨迹寻找目标
    • RRT, A*, D* ,D* Lite
  • Control Theory
    • 动态系统理论实现目标状态
    • MPC模型预测控制, LQR线性二次型
  • AI:状态到action的映射
    • 强化学习,模仿学习等

http://planning.cs.uiuc.edu/http://planning.cs.uiuc.edu/par1.pdf

如何解决一个Motion Planning问题?

我们需要找到一个简单的突破口,首先是一个path finding 问题,也就是路径选择问题。在这个问题中,我们不关心速度,不关心机器人如何运动,我们只关心路径的生成。

什么样的Path才是最好的path?

PathFinding.jshttps://qiao.github.io/PathFinding.js/visual/

无人驾驶中的规划和A* search有什么区别?

  • 无人驾驶场景下是部分感知
  • 有动态障碍物
  • 复杂环境:交通约束、碰瓷
  • 而A* 是一个global algorithm

  • Partial observed situation
    • 贪心算法
      increamental search:目前状态求解到最优
  • D* 
    • 部分环境信息的一种搜索算法,经典的apollo登月小车上就采用了这种算法。
    • D* Lite
    • 使用D*算法进行路径搜索不一定能够搜索到全局最优解,但是经过统计学的分析,是能够逼近全局最优解的。
      Stentz Anthony, "Optimal and Efficient Path Planning for Partially-Known Environments", 1994

至此,我们已经有了如下几个方法:

  • 构造目标函数并且结合了平滑性和目标cost
  • 使用通用的search方法来最小化Cost从而找到一个最优解
  • 通过Partial observed information 来做局部planning

路径规划还需要什么?

  • 处理动态障碍物,动态环境
  • 遵守交通规则,公共安全
  • 实时计算
    • 计算时间100ms-150ms
    • 人的一般反应时间300ms-500ms
    • 酒驾 1000ms
    • 有限时间内找到最优解
      这就是为什么很多大公司使用C++而不用python的原因,因为C++能够对代码进行更多的优化。

motion planning定义

  • Safely
  • Smootly
  • Achieve to destination (能够到达目的地)
  • 输出三维的轨迹 X,Y,Time :3D trajectory optimization problem
  • 无人车硬件系统
    • 定位设备
    • 感知设备</
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值