顺序推荐相关论文整理

顺序推荐:通过用户项目交互在序列上的顺序依赖性来进行建模,并依照模型对后续交互进行预测。
例如:

Jimmy定好机票,酒店并租完车后的下一步会是什么?
Tina在买完iPhone, Watch ,AirPods后下一步会是什么?
用户的喜好和项目流行的影响力,会随着时间发生变化。根据用户项目在不同时间的购买关系上,我们进行推荐,这是传统协同过滤所忽略的。

顺序推荐面临的挑战:
1.数据特征
(1)长的用户项目交互序列
这里面临两种困难情况,也即是高阶顺序依赖性和长期序列依赖性

高阶序列依赖性:通过隐马尔科夫链模型或者因式分解机可知,较长的交互使得多个用户和项目之间的隐含关系更多更复杂。
目前解决方法采用:隐马尔可夫链和RNN

长期序列依赖性:两个交互之间的依赖性强,但是序列距离过远。
目前解决方法:LSTM和GRU

(2)灵活的处理顺序
不是所有相邻顺序的交互都具有标准的顺序相关性,例如我们要做面包,可以先买面粉,再买黄油,糖,也可以先买黄油与面粉。
目前解决方法:CNN

(3)带有噪声的交互
用户点击时并没有基于序列等强相关的因素,而可能是误碰等弱相关或不相关的交互。
目前解决方法:注意力机制

(4)具有异构关系的交互
用户项目交互序列之间的关系具有差异,要根据差异针对性建模,例如:长期依赖关系和短期依赖关系的建模要有差异。
目前解决方法:混合模型

(5)分层结构处理序列交互
用户项目交互会出现许多子序列,除了当前子序列中的交互,历史子序列也可能影响预测。将层次依赖性和顺序依赖性结合,从而提供更精准预测。
目前解决方法:特征丰富的RNN,分层嵌入,分层RNN,分层注意力机制。

目前序列推荐的模型:

传统序列模型:
(1)序列模式挖掘:频繁采集序列,利用挖掘到的序列指导推荐。
产生大量冗余,浪费时间和空间,由于次数限制,常常只学习流行。
(2)马尔科夫链:学习交互序列,根据当前状态预测邻近状态。
过于依靠相邻状态,忽略长期依赖关系

潜在表征模型:
(1)因式分解机:常采用矩阵因式分解和张量因式分解
将用户项目交互分解为用户项目潜在推荐因素,再预测。
容易受数据稀疏性影响。
(2)嵌入:将用户项目交互编码,学习编码后的嵌入,输入到网络,得到预测评分,最后进行预测。

深度神经网络模型:
1.基本模型:
(1)RNN:给定一系列历史用户项目交互,根据交互顺序建模预测下一个。经典的就是基于此的LSTM和GRU来研究中长期依赖关系。
过于依赖相邻相互作用,从而捕捉相邻但无关的噪声,过于逐条捕捉忽略整体(几条构成一个集合整体)依赖关系。
(2)CNN:将历史交互的嵌入放入矩阵,将该矩阵视为图像矩阵,基于此卷积。但是容易忽略长期依赖关系
2.高级模型:
(1)注意力模型:加强序列中真正相关的交互或者说重要交互,而降低次要交互的作用。
(2)记忆网络:结合外部存储矩阵,存储历史交互来捕捉历史交互与下一个交互的依赖性。
(3)混合模型:捕捉不同种类依赖关系,例如长期依赖和短期依赖关系。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值