ICLR 2024 时间序列相关最新论文汇总,涉及transformer、GNN、大模型等热门领域

ICLR2024展示了在时间序列预测领域的多项突破,包括Transformer改进、注意力耦合器、周期性解耦框架、自适应路径多尺度模型和预训练方法。这些研究强调了模型的效率、准确性及对复杂金融和时间序列数据的处理能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ICLR(International Conference on Learning Representations),国际公认的深度学习顶会之一,与AAAI、CVPR、ACL和NIPS等老牌学术会议齐名,由图灵奖巨头Yoshua Bengio和Yann LeCun牵头举办,在人工智能、统计和数据科学以及计算机视觉、语音识别、文本理解等多个重要应用领域中都发表了众多极其有影响力的论文。

本届ICLR 2024会议共收到了7262篇论文,整体接收率约为31%,与去年(31.8%)基本持平。其中Spotlight论文比例为5%,Oral论文比例为1.2%。会议将于2024年5月7日至11日在奥地利维也纳举行,为来自世界各地最杰出的人工智能专家和研究者提供交流平台,共同探讨前沿的深度学习和强化学习领域的最新进展。

本文盘点了 ICLR 2024 有关时间序列领域的最新研究成果,为大家的论文添砖加瓦:

  • transformer:4篇

  • 多层感知机:1篇

  • 图神经网络:1篇

  • 生成模型:4篇

  • 即插即用(与模型无关):1篇

  • LLM大模型:2篇

  • 预训练与表示:3篇

transformer

TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series

更好、更快、更简单的多元时间序列注意力耦合器

「简述:」论文介绍了一种新的多变量概率时间序列预测模型,旨在灵活地解决一系列任务,包括预测、插值及其组合。基于 copula 理论,作者提出了最近引入的基于 transformer 的注意力 copula(TACTiS)的简化目标,其中分布参数的数量现在与变量的数量成线性关系,而不是成指数关系。新的目标需要引入一个训练课程,这与原始架构的必要更改密切相关。

Periodicity Decoupling Framework for Long-term Series Forecasting

长期序列预测的周期性解耦框架

「简述:」论文提出了一种新的周期性解耦框架(PDF),用于捕捉解耦系列的二维时间变化,进行长期系列预测。该框架由三个组件组成:多周期解耦块、双变量建模块和变量聚合块。与之前的方法不同,该方法主要对二维时间变化进行建模,通过解耦一维时间序列来捕捉。实验结果显示,该方法在预测性能和计算效率方面优于其他最先进的方法。

Multi-scale Transformers with Adaptive Pathways for T
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值