基于机器学习的学生成绩预测系统设计与实现

学生成绩是评价教学质量的重要依据。随着信息化技术的普及,学校教学管理系统及课程作业系统中,以电子数据形式积累了大量的学生作业成绩和考试成绩。如何对这些成绩数据进行有效挖掘以提高教学质量,是值得研究的问题。学生因个体差异,导致学习效果会存在很大的差异。如果能利用学生已有成绩对该学生的未来成绩做出预测,并以预测结果为依据,适当地更改教学策略并对学生进行提示,可以提高教学质量。
相关技术中,成绩预测主要采用基于人工的预测方法,由教师或者科研人员人工收集数据,并根据经验对成绩进行估计。该类方法不仅工作过程复杂,而且计算量大、耗时长。随后出现了基于数理统计的预测方法,如最小二乘回归、灰色模型等。该类方法采用数学建模对学生成绩进行预测,然而该类方法对于非线性数据的预测能力不强,无法准确刻画学生成绩变化特点。近些年,基于机器学习的预测方法发展迅速,如贝叶斯网络、bp神经网络等。该类方法具有很强的非线性建模能力。
但是,学生学习的相关数据维度庞大,并且部分维度数据对于预测结果的影响较小,基于原始维度的数据训练会大大增加训练的耗时,增加模型的复杂度,且容易导致模型出现过拟合,使得最终得到的预测结果准确度偏低。
综合上述,相关技术中存在的技术问题亟需得到解决。

成绩预测

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值