用r绘制可靠性数据的Kaplan Meier estimate并用Weibull分布近似进行模型诊断

本文通过R语言的survival包,利用卵巢癌患者生存时间数据,展示如何计算Kaplan-Meier统计量,并探讨用Weibull分布对数据进行近似估计。同时,通过检验确认样本是否符合指数分布和Weibull分布。
摘要由CSDN通过智能技术生成

数据集及软件

作业中遇到的问题,觉得保存之后制图调用代码会很方便。
需要导入r中的“survival”包,用于生存性分析。
调用的数据是r中内置的ovarian(卵巢癌患者在接受两种治疗药物之后的生存时间)

KM统计量

作为生存性数据里非参数统计分析里最为重要的统计量之一,Kaplan-Meier 统计量

library(survival)
fit1 = survfit(Surv(ovarian$futime,ovarian$fustat)~1)
# 绘制带confidence bound的KM curves
plot(fit1,main="Kaplan-Meier estimate with 95% cofidence bounds", xlab = "days", ylab = "survival function", col=4)

在这里插入图片描述

Weibull分布近似估计

进行Weibull 分布近似

fit2<-survreg(Surv(ovarian$futime,ovarian$fustat)~1, dist="weibull")
summary(fit2)
mu <- fit2$coefficients
sigma <- fit2$scale
lambda.hat<- exp(-mu)
alpha.hat<- 1/sigma
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值