Kaplan–Meier estimator 介绍

本文详细介绍了Kaplan-Meier生存分析方法,包括其基本原理、估计过程及与风险函数的关系等内容。通过该方法可以有效评估生存率,特别适用于含有截断数据的情况。
摘要由CSDN通过智能技术生成

Kaplan–Meier estimator 介绍

本文主要便于自己理解推导,并不完善,参考如下资料:
https://en.jinzhao.wiki/wiki/Kaplan%E2%80%93Meier_estimator

总的公式如下:
在这里插入图片描述
下面对这个公式进行解读:

首先定义一下问题:
在这里插入图片描述
问题的定义还是很清楚的。需要注意的是这里的生存函数S(t)是大于t的概率,而t我们这里当作是离散的。
对这个问题怎么估计呢?最简单直接的方法如下:
首先介绍如下规律:
在这里插入图片描述
Proposition1 很容易理解。下面这句呢?就是对于给定的t,选出 c k ≥ t c_k \ge t ckt的那些k,对于这个t,就有下面的概率的关系。怎么理解:真实值大于t,那么观测值肯定也会大于t,因此两者大于t的概率是相等的。下面是简单的估计方法:
在这里插入图片描述
怎么理解呢?就是构造了 X k X_k Xk这样一个0-1变量,然后这个变量服从伯努利分布,且 X k = 1 X_k=1 Xk=1的概率就是关于真实变量的分布函数的取值:S(t-1)。那么根据观测亮,就可以估计出这个概率值了。
这个估计有如下几个问题:
受m(t)的影响比较大,导致对于有些t,估计的样本可能不足。而且这种估计忽略了在t之前就被截断的数据,这些数据对于估计S(t)还是有一定信息量的,而这种简单的估计直接忽略了这些信息量。那么如何用到这些信息量呢,这正是KM估计做的:
在这里插入图片描述
KM估计的思路如上,还是比较好理解的。注意风险函数的相关定义。
因此可以得到KM估计的求法:
在这里插入图片描述
在这里插入图片描述
进行适当的简化变形,就得到的文章开头的式子。

另一种推断方法:
在这里插入图片描述
生存函数和风险函数的关系是定义好的。然后风险函数可以根据极大似然估计得到,然后就可以得到生存函数的估计了。

上面只是估计了期望吧,方差怎么估计呢:
在这里插入图片描述

### Nomogram 预测模型概述 Nomogram 是一种图形化的预测工具,广泛应用于医学和其他领域中的风险评估和预后分析。这种工具能够将复杂的统计模型简化为易于理解和使用的图表形式[^1]。 #### IT 应用实现方法 在现代信息技术的支持下,nomogram 的创建和应用变得更加高效便捷。通过机器学习算法,特别是那些能处理高维数据集的方法,可以构建更加精确的 nomogram 模型。例如,在医疗环境中,利用个体条件期望 (ICE) 图可以帮助理解不同因素如何影响最终的风险评分。对于具体的编程实现,Python 和 R 提供了许多库支持此类工作: ```python import numpy as np from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression import matplotlib.pyplot as plt from sksurv.nonparametric import kaplan_meier_estimator from lifelines import CoxPHFitter # 加载乳腺癌数据集并分割成训练集和测试集 data = load_breast_cancer() X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2) # 使用逻辑回归建立基础模型 model = LogisticRegression().fit(X_train, y_train) # 计算生存函数估计值 times, survival_probabilities = kaplan_meier_estimator(y_train==1, time_points=y_train) # 构建Cox比例风险模型以生成nomogram所需参数 cox_model = CoxPHFitter().fit(pd.DataFrame(np.c_[y_train,X_train]), duration_col='time', event_col='event') # 绘制Kaplan-Meier曲线 plt.step(times, survival_probabilities, where="post") plt.show() # 注:上述代码片段仅展示了部分流程;完整的nomogram开发还需要进一步的数据准备、特征工程以及模型验证过程。 ``` #### 用途 Nomogram 主要用于以下几个方面: - **临床决策辅助**:帮助医生快速判断患者病情发展可能性; - **个性化治疗方案推荐**:依据患者的特定情况提供最优建议; - **研究数据分析**:促进研究人员更直观地解释复杂关系及其不确定性范围。 #### 解释 Nomogram 将多个输入变量转换为单个得分或概率输出,使得非专业人士也能轻松解读结果。每个轴代表一个独立的影响因子,而总分则反映了综合效应大小。这种方法不仅提高了透明度还增强了可操作性,尤其适合于需要频繁更新预测结论的应用场景中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值