给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。
求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。
给定一张边带权的无向图 G=(V,E),其中 V 表示图中点的集合,E 表示图中边的集合,n=|V|,m=|E|。
由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。
输入格式
第一行包含两个整数 n 和 m。
接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。
输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。
数据范围
1≤n≤500,
1≤m≤105,
图中涉及边的边权的绝对值均不超过 10000。
输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6
时间复杂度:o(n^2)
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
int n,m;
const int N = 510;
int g[N][N],dist[N];
int inf=0x3f3f3f3f;
bool st[N];
int prim()
{
memset(dist, 0x3f, sizeof dist);
int res=0;
for (int i=0;i<n;i++)
{
int t=-1;
for (int j=1;j<=n;j++)
{
if (st[j]==false && (t==-1 || dist[t]>dist[j]))
{
t=j;
}
}
if (i && dist[t]==inf)//如果不是第一个点,且下一个点的距离是正无穷,证明不是连通图
{
return inf;
}
if (i)//不是第一个点
{
res+=dist[t];
}
st[t]=true;
for (int j=1;j<=n;j++)//扩展其他点到集合的距离
{
dist[j]=min(dist[j],g[t][j]);
}
}
return res;
}
int main()
{
scanf("%d%d", &n, &m);
memset(g, 0x3f, sizeof g);
for (int i=0;i<m;i++)
{
int a,b,c;
scanf("%d%d%d", &a,&b,&c);
g[a][b]=g[b][a]=min(g[a][b],c);
}
int t=prim();
if (t==inf)
{
puts("imposible");
}
else
{
printf("%d\n",t);
}
return 0;
}
给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。
求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。
给定一张边带权的无向图 G=(V,E),其中 V 表示图中点的集合,E 表示图中边的集合,n=|V|,m=|E|。
由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。
输入格式
第一行包含两个整数 n 和 m。
接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。
输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。
数据范围
1≤n≤105,
1≤m≤2∗105,
图中涉及边的边权的绝对值均不超过 1000。
输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6
思路(如图):
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 200010;
int n,m;
int P[N];//储存并查集
struct Edge
{
int a,b,w;
bool operator < (const Edge &W) const
{
return w<W.w;
}
}edges[N];
int find(int x)
{
if (P[x]!=x)
{
P[x]=find(P[x]);
}
return P[x];
}
int main()
{
scanf("%d%d", &n,&m);
for (int i=0;i<m;i++)
{
int a,b,w;
scanf("%d%d%d", &a, &b,&w);
edges[i]={a,b,w};
}
sort(edges,edges+m);
for (int i=1;i<=n;i++)
{
P[i]=i;
}
int res=0,cnt=0;//re存的是最小生成树的边权,cnt存的是边数
for (int i=0;i<m;i++)
{
int a=edges[i].a,b=edges[i].b,w=edges[i].w;
a=find(a),b=find(b);
if (a!=b)
{
P[a]=b;
res+=w;
cnt++;
}
}
if (cnt<n-1)
{
puts("imposible");
return 0;
}
else
{
printf("%d\n",res);
}
return 0;
}