最小生成树

 在这里插入图片描述


给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。

求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。

给定一张边带权的无向图 G=(V,E),其中 V 表示图中点的集合,E 表示图中边的集合,n=|V|,m=|E|。

由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。

输入格式
第一行包含两个整数 n 和 m。

接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。

输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。

数据范围
1≤n≤500,
1≤m≤105,
图中涉及边的边权的绝对值均不超过 10000。

输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6


 时间复杂度:o(n^2)

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;

int n,m;
const int N = 510;
int g[N][N],dist[N];
int inf=0x3f3f3f3f;
bool st[N]; 

int prim()
{
    memset(dist, 0x3f, sizeof dist);
    int res=0;
    for (int i=0;i<n;i++)
    {
        int t=-1;
        for (int j=1;j<=n;j++)
        {
            if (st[j]==false && (t==-1 || dist[t]>dist[j]))
            {
                t=j;
            }
        }
        if (i && dist[t]==inf)//如果不是第一个点,且下一个点的距离是正无穷,证明不是连通图
        {
            return inf;
        }
        if (i)//不是第一个点
        {
            res+=dist[t];
        }
        st[t]=true;
        for (int j=1;j<=n;j++)//扩展其他点到集合的距离
        {
            dist[j]=min(dist[j],g[t][j]);
        }
    }
    return res;
}



int main()
{
    scanf("%d%d", &n, &m);
    memset(g, 0x3f, sizeof g);
    for (int i=0;i<m;i++)
    {
        int a,b,c;
        scanf("%d%d%d", &a,&b,&c);
        g[a][b]=g[b][a]=min(g[a][b],c);
    }
    
    int t=prim();
    if (t==inf)
    {
        puts("imposible");
    }
    else
    {
        printf("%d\n",t);
    }
    return 0;
}

 

给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。

求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。

给定一张边带权的无向图 G=(V,E),其中 V 表示图中点的集合,E 表示图中边的集合,n=|V|,m=|E|。

由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。

输入格式
第一行包含两个整数 n 和 m。

接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。

输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。

数据范围
1≤n≤105,
1≤m≤2∗105,
图中涉及边的边权的绝对值均不超过 1000。

输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6
 


思路(如图):

 


#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 200010;
int n,m;
int P[N];//储存并查集

struct Edge
{
    int a,b,w;
    bool operator < (const Edge &W) const
    {
        return w<W.w;
    }
}edges[N];


int find(int x)
{
    if (P[x]!=x)
    {
        P[x]=find(P[x]);
    }
    return P[x];
}


int main()
{
    scanf("%d%d", &n,&m);
    for (int i=0;i<m;i++)
    {
        int a,b,w;
        scanf("%d%d%d", &a, &b,&w);
        edges[i]={a,b,w};
    }
    sort(edges,edges+m);
    for (int i=1;i<=n;i++)
    {
        P[i]=i;
    }
    int res=0,cnt=0;//re存的是最小生成树的边权,cnt存的是边数
    for (int i=0;i<m;i++)
    {
        int a=edges[i].a,b=edges[i].b,w=edges[i].w;
        a=find(a),b=find(b);
        if (a!=b)
        {
            P[a]=b;
            res+=w;
            cnt++;
        }
    }
    if (cnt<n-1)
    {
        puts("imposible");
        return 0;
    }
    else
    {
        printf("%d\n",res);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值