marsjhao的炼丹炉

点滴记录成长之路

深度学习经典卷积神经网络之GoogLeNet(Google Inception Net)

一、GoogLeNet相关论文及下载地址

[v1] Going Deeper withConvolutions, 6.67% test error,2014.9

论文地址:http://arxiv.org/abs/1409.4842

[v2] Batch Normalization:Accelerating Deep Network Training by Reducing Internal Covariate Shift, 4.8% test error,2015.2

论文地址:http://arxiv.org/abs/1502.03167

[v3] Rethinking theInception Architecture for Computer Vision, 3.5%test error,2015.12

论文地址:http://arxiv.org/abs/1512.00567

[v4] Inception-v4,Inception-ResNet and the Impact of Residual Connections on Learning, 3.08% test error,2016.2

论文地址:http://arxiv.org/abs/1602.07261

二、GoogLeNet发展历程

1. Inception v1的网络,打破了常规的卷积层串联的模式,将1x1,3x3,5x5的卷积层和3x3的pooling池化层并联组合后concatenate组装在一起的设计思路;

2. Inception v2的网络在Inception v1的基础上,进行了改进,一方面了加入了BN层,减少了Internal Covariate Shift(内部神经元分布的改变),使每一层的输出都规范化到一个N(0, 1)的高斯,还去除了Dropout、LRN等结构;另外一方面学习VGG用2个3x3的卷积替代inception模块中的5x5卷积,既降低了参数数量,又加速计算;

3. Inception v3一个最重要的改进是分解(Factorization),将7x7分解成两个一维的卷积(1x7,7x1),3x3也是一样(1x3,3x1)。这样的好处,既可以加速计算(多余的计算能力可以用来加深网络),又可以将1个conv拆成2个conv,使得网络深度进一步增加,增加了网络的非线性,可以处理更多更丰富的空间特征,增加特征多样性。还有值得注意的地方是网络输入从224x224变为了299x299,更加精细设计了35x35/17x17/8x8的模块;

4. Inception v4结合了微软的ResNet,发现ResNet的结构可以极大地加速训练,同时性能也有提升,得到一个Inception-ResNet v2网络,同时还设计了一个更深更优化的Inception v4模型,能达到与Inception-ResNet v2相媲美的性能。

三、Inception V1

1. 概述

Google Inception Net首次出现在ILSVRC 2014的比赛中,以较大优势取得了第一名。那届比赛中的Inception Net通常被称为Inception V1,它最大的特点是控制了计算量和参数量的同时,获得了非常好的分类性能——top-5错误率6.67%,只有AlexNet的一半不到。Inception V1有22层深,比AlexNet的8层或者VGGNet的19层还要更深。但其计算量只有15亿次浮点运算,同时只有500万的参数量,仅为AlexNet参数量(6000万)的1/12,却可以达到远胜于AlexNet的准确率,可以说是非常优秀并且非常实用的模型。Inception V1降低参数量的目的有两点,第一,参数越多模型越庞大,需要供模型学习的数据量就越大,而目前高质量的数据非常昂贵;第二,参数越多,耗费的计算资源也会更大。Inception V1参数少但效果好的原因除了模型层数更深、表达能力更强外,还有两点:一是去除了最后的全连接层,用全局平均池化层(即将图片尺寸变为1*1)来取代它。全连接层几乎占据了AlexNet或VGGNet中90%的参数量,而且会引起过拟合,去除全连接层后模型训练更快并且减轻了过拟合。用全局平均池化层取代全连接层的做法借鉴了NetworkIn Network(以下简称NIN)论文。二是Inception V1中精心设计的InceptionModule提高了参数的利用效率,其结构如图1所示。这一部分也借鉴了NIN的思想,形象的解释就是Inception Module本身如同大网络中的一个小网络,其结构可以反复堆叠在一起形成大网络。不过Inception V1比NIN更进一步的是增加了分支网络,NIN则主要是级联的卷积层和MLPConv层。一般来说卷积层要提升表达能力,主要依靠增加输出通道数,但副作用是计算量增大和过拟合。每一个输出通道对应一个滤波器,同一个滤波器共享参数,只能提取一类特征,因此一个输出通道只能做一种特征处理。而NIN中的MLPConv则拥有更强大的能力,允许在输出通道之间组合信息,因此效果明显。可以说,MLPConv基本等效于普通卷积层后再连接1*1的卷积和ReLU激活函数。

图1 Inception Module

2. InceptionModule

Inception Module的基本结构如图1,有4个分支:第一个分支对输入进行1*1的卷积,这其实也是NIN中提出的一个重要结构。1*1的卷积是一个非常优秀的结构,它可以跨通道组织信息,提高网络的表达能力,同时可以对输出通道升维和降维。可以看到Inception Module的4个分支都用到了1*1卷积,来进行低成本(计算量比3*3小很多)的跨通道的特征变换。第二个分支先使用了1*1卷积,然后连接3*3卷积,相当于进行了两次特征变换。第三个分支类似,先是1*1的卷积,然后连接5*5卷积。最后一个分支则是3*3最大池化后直接使用1*1卷积。有的分支只使用1*1卷积,有的分支使用了其他尺寸的卷积时也会再使用1*1卷积,这是因为1*1卷积的性价比很高,用很小的计算量就能增加一层特征变换和非线性化。Inception Module的4个分支在最后通过一个聚合操作合并(在输出通道数这个维度上聚合)。Inception Module中包含了3种不同尺寸的卷积和1个最大池化,增加了网络对不同尺度的适应性,这一部分和Multi-Scale的思想类似。早期计算机视觉的研究中,受灵长类神经视觉系统的启发,Serre使用不同尺寸的Gabor滤波器处理不同尺寸的图片,Inception V1借鉴了这种思想。Inception V1的论文中指出,InceptionModule可以让网络的深度和宽度高效率地扩充,提升准确率且不致于过拟合。


稀疏结构是非常适合神经网络的一种结构,尤其是对非常大型、非常深的神经网络,可以减轻过拟合并降低计算量,例如卷积神经网络就是稀疏的连接。Inception Net的主要目标就是找到最优的稀疏结构单元Inception Module,论文中提到其稀疏结构基于Hebbian原理,这里简单解释一下Hebbian原理:神经反射活动的持续与重复会导致神经元连接稳定性的持久提升,当两个神经元细胞A和B距离很近,并且A参与了对B重复、持续的兴奋,那么某些代谢变化会导致A将作为能使B兴奋的细胞。总结一下即“一起发射的神经元会连在一起”(Cells that fire together, wire together),学习过程中的刺激会使神经元间的突触强度增加。受Hebbian原理启发,另一篇文章Provable Bounds for Learning Some Deep Representations提出,如果数据集的概率分布可以被一个很大很稀疏的神经网络所表达,那么构筑这个网络的最佳方法是逐层构筑网络:将上一层高度相关的节点聚类,并将聚类出来的每一个小簇(cluster)连接到一起,如图2所示。这个相关性高的节点应该被连接在一起的结论,即是从神经网络的角度对Hebbian原理有效性的证明。

2将高度相关的节点连接在一起,形成稀疏网络

因此一个“好”的稀疏结构,应该是符合Hebbian原理的,我们应该把相关性高的一簇神经元节点连接在一起。在图片数据中,天然的就是临近区域的数据相关性高,因此相邻的像素点被卷积操作连接在一起。而我们可能有多个卷积核,在同一空间位置但在不同通道的卷积核的输出结果相关性极高。因此,一个1*1的卷积就可以很自然地把这些相关性很高的、在同一个空间位置但是不同通道的特征连接在一起,这就是为什么1*1卷积这么频繁地被应用到Inception Net中的原因。1*1卷积所连接的节点的相关性是最高的,而稍微大一点尺寸的卷积,比如3*3、5*5的卷积所连接的节点相关性也很高,因此也可以适当地使用一些大尺寸的卷积,增加多样性(diversity)。Inception Module通过4个分支中不同尺寸的1*13*35*5等小型卷积将相关性很高的节点连接在一起,就完成了其设计初衷,构建出了很高效的符合Hebbian原理的稀疏结构。

3. InceptionNet网络结构

在Inception Module中,通常1*1卷积的比例(输出通道数占比)最高,3*3卷积和5*5卷积稍低。而在整个网络中,会有多个堆叠的Inception Module,我们希望靠后的InceptionModule可以捕捉更高阶的抽象特征,因此靠后的Inception Module的卷积的空间集中度应该逐渐降低,这样可以捕获更大面积的特征。因此,越靠后的InceptionModule中,3*35*5这两个大面积的卷积核的占比(输出通道数)应该更多

Inception Net有22层深,除了最后一层的输出,其中间节点的分类效果也很好。因此在Inception Net中,还使用到了辅助分类节点(auxiliary classifiers),即将中间某一层的输出用作分类,并按一个较小的权重(0.3)加到最终分类结果中。这样相当于做了模型融合,同时给网络增加了反向传播的梯度信号,也提供了额外的正则化,对于整个Inception Net的训练很有裨益。Inception V1也使用了Multi-Scale、Multi-Crop等数据增强方法,并在不同的采样数据上训练了7个模型进行融合,得到了最后的ILSVRC 2014的比赛成绩——top-5错误率6.67%。

对上图做如下说明:

1. 显然GoogLeNet采用了模块化的结构,方便增添和修改;

2. 网络最后采用了average pooling来代替全连接层,想法来自NIN,事实证明可以将TOP1 accuracy提高0.6%。但是,实际在最后还是加了一个全连接层,主要是为了方便以后大家finetune;

3. 虽然移除了全连接,但是网络中依然使用了Dropout ;

4. 为了避免梯度消失,网络额外增加了2个辅助的softmax用于向前传导梯度。文章中说这两个辅助的分类器的loss应该加一个衰减系数,但看caffe中的model也没有加任何衰减。此外,实际测试的时候,这两个额外的softmax会被去掉。

下图是清晰图。

四、Inception V2

Inception V2学习了VGGNet,用两个3*3的卷积代替5*5的大卷积(用以降低参数量并减轻过拟合),还提出了著名的BatchNormalization(以下简称BN)方法。BN是一个非常有效的正则化方法,可以让大型卷积网络的训练速度加快很多倍,同时收敛后的分类准确率也可以得到大幅提高。BN在用于神经网络某层时,会对每一个mini-batch数据的内部进行标准化(normalization)处理,使输出规范化到N(0,1)的正态分布,减少了InternalCovariate Shift(内部神经元分布的改变)。BN的论文指出,传统的深度神经网络在训练时,每一层的输入的分布都在变化,导致训练变得困难,我们只能使用一个很小的学习速率解决这个问题。而对每一层使用BN之后,我们就可以有效地解决这个问题,学习速率可以增大很多倍,达到之前的准确率所需要的迭代次数只有1/14,训练时间大大缩短。而达到之前的准确率后,可以继续训练,并最终取得远超于Inception V1模型的性能——top-5错误率4.8%,已经优于人眼水平。因为BN某种意义上还起到了正则化的作用,所以可以减少或者取消Dropout,简化网络结构

只是单纯地使用BN获得的增益还不明显,还需要一些相应的调整:增大学习速率并加快学习衰减速度以适用BN规范化后的数据;去除Dropout并减轻L2正则(因BN已起到正则化的作用);去除LRN;更彻底地对训练样本进行shuffle;减少数据增强过程中对数据的光学畸变(因为BN训练更快,每个样本被训练的次数更少,因此更真实的样本对训练更有帮助)。在使用了这些措施后,Inception V2在训练达到Inception V1的准确率时快了14倍,并且模型在收敛时的准确率上限更高。

五、Inception V3

Inception V3网络则主要有两方面的改造:一是引入了Factorization into smallconvolutions的思想将一个较大的二维卷积拆成两个较小的一维卷积,比如将7*7卷积拆成1*7卷积和7*1卷积,或者将3*3卷积拆成1*3卷积和3*1卷积,如图3所示。一方面节约了大量参数,加速运算并减轻了过拟合(比将7*7卷积拆成1*7卷积和7*1卷积,比拆成3个3*3卷积更节约参数),同时增加了一层非线性扩展模型表达能力。论文中指出,这种非对称的卷积结构拆分,其结果比对称地拆为几个相同的小卷积核效果更明显,可以处理更多、更丰富的空间特征,增加特征多样性


3将一个3*3卷积拆成1*3卷积和3*1卷积

Inception V3优化了Inception Module的结构,现在Inception Module有35*35、17*17和8*8三种不同结构,如图4所示。这些Inception Module只在网络的后部出现,前部还是普通的卷积层。并且Inception V3除了在Inception Module中使用分支,还在分支中使用了分支(8*8的结构中),可以说是Network In Network In Network。

4Inception V3中三种结构的InceptionModule

(1) 图4左是GoogLeNetV1中使用的Inception结构;

(2) 图5中是用3x3卷积序列来代替大卷积核;

(3) 图6右是用nx1卷积来代替大卷积核,这里设定n=7来应对17x17大小的feature map。该结构被正式用在GoogLeNet V2中。

5Inception V3的网络结构

六、Inception V4

Inception V4相比V3主要是结合了微软的ResNet。

Inception v4结合了微软的ResNet,发现ResNet的结构可以极大地加速训练,同时性能也有提升,得到一个Inception-ResNet v2网络,同时还设计了一个更深更优化的Inception v4模型,能达到与Inception-ResNet v2相媲美的性能。

 

相关博客:深入浅出——网络模型中Inception的作用与结构全解析

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/marsjhao/article/details/73088850
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

深度学习经典卷积神经网络之GoogLeNet(Google Inception Net)

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭