稀疏编码(Sparse Coding)的前世今生(二)

本文探讨了稀疏编码如何应用于随时间变化的图像流,将图像序列视为时空基函数的线性组合,并介绍了相关的概率模型和求解步骤。通过假设系数独立和稀疏,利用梯度下降法和Hebbian学习来更新系数和基函数。稀疏编码的思想为行为识别和语言识别等领域提供了理论基础,并随着深度学习的发展得到进一步应用。
摘要由CSDN通过智能技术生成

       为了更进一步的清晰理解大脑皮层对信号编码的工作机制(策略),需要把他们转成数学语言,因为数学语言作为一种严谨的语言,可以利用它推导出期望和要寻找的程式。本节就使用概率推理(bayes views)的方式把稀疏编码扩展到随时间变化的图像上,因为人类或者哺乳动物在日常活动中通过眼睛获取的信号是随时间变化而变化的,对于此类信号仍然有一些稀疏系数和基可以描述他们,同类型的处理方式也有慢特征分析(slow features analysis)。废话不多说了,进入正题:

       我们把图像流(图像序列)看成时空基函数的线性组合再加上一些噪声,当然时空基函数可以想象成是时空不变的,类似于行为识别里的3D-SIFT,这点貌似又和慢特征分析扯上关系咯。同样时空基函数仍然有一些系数,用表示,则图像流则可以看成时空基和系数的卷积加上一些噪声,其模型如(公式一)所示:

  • 3
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
卷积稀疏编码(convolutional sparse coding)是一种基于深度学习模型的方法,用于学习输入数据的稀疏表示。它在计算机视觉和模式识别领域得到了广泛应用。 与传统的稀疏编码方法不同,卷积稀疏编码利用了卷积层的结构和权值共享的特性。它通过在输入数据上应用卷积操作和非线性激活函数来提取特征,并使用稀疏性约束来学习这些特征的表示。 卷积稀疏编码的一个关键思想是特征共享。通过共享权值,可以减少需要学习的参数量,并使模型具有良好的泛化能力。这种共享的方式使得卷积稀疏编码在处理图像、视频等高维数据时更加有效。 卷积稀疏编码的训练过程可以通过最小化重构误差和稀疏性约束来实现。通过最小化重构误差,模型可以学习到输入数据的低维表示,从而具有压缩和降维的效果。同时,通过稀疏性约束,模型可以选择性地激活少量的特征,从而实现特征的稀疏表示。 卷积稀疏编码在图像处理领域的应用非常广泛。它可以用于图像去噪、图像恢复、图像合成等任务。此外,随着深度学习的发展,卷积稀疏编码也被应用于图像分类、目标检测和语义分割等视觉任务中。 总之,卷积稀疏编码是一种利用卷积层和权值共享的方法,用于学习输入数据的稀疏表示。它具有良好的泛化能力和较好的压缩和降维效果,已在图像处理和计算机视觉领域取得了很好的应用效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值