【论文阅读】SCNN - 模块化可解释的多元时间序列预测

文章提出了一种利用因素分解思想将多元时间序列预测问题模块化的建模方法,通过提取长周期、短周期、季节性和序列相关性四个模块,实现预测的可解释性。模型包括Encoder和Decoder,对各模块信息进行编码和解码预测,实验显示该方法在多个数据集上相比其他模型有显著效果提升。
摘要由CSDN通过智能技术生成

在这里插入图片描述

1. 简介

这篇文章的核心是,利用因素分解的思路将多元时间序列预测问题模块化,并得益于分解和模块化建模方法,实现多元时间序列预测的可解释性建模。

2. 问题定义

  1. 基础符号
    在这里插入图片描述
  2. 多元时序预测 Multivariate time series forecasting
    在这里插入图片描述
  3. 多元时序的生成过程 Generative process for multivariate time series
    假设整个多元时间序列的生成由下面4个等式而来,其中Z0是原始多元序列的表示,它可以拆解为上述4个模块,每个模块由一个scale因子 σ t ∗ σ_t^∗ σt和一个location因子 μ t ∗ μ_t^* μt定义:
    在这里插入图片描述

3. 模型

提取各个模块的scale和location:
长周期项——使用一个较大的滑动窗口,计算窗口内的均值和方差,作为scale和factor;
短周期项——和长周期项计算方法相同,但是会使用一个较小的滑动窗口,防止短期信息被平滑掉;
季节项——可以通过傅里叶变换提取,文中增加一个简化假设,季节性的周期长度不变,因此直接采用了窗口统计的方法;
序列相关性项——多元序列比单元序列需要多考虑各个序列之间的关系这一项,文中attention计算两两序列相关性打分,利用该打分计算你scale和factor。

基于上述4个分解模块,模型的主体结构如下图,包括Encoder和Decodeer两个部分。Encoder对4个模块的信息进行编码,Decoder对4个模块的信息进行外推预测,并产出预测结构。

通过4个模块分别提取相应的表征和scale、location等factor后,将这4个模块的信息拼接到一起,对应图中的Zn和Hn。各个模块的提取过程按照第一节中的多元时间序列生成假设来,对于原始序列,先抽取长周期模块的scale和location,去掉长周期信息后的表示,再输入到下一个组件抽取季节模块,以此类推顺序的进行抽取。4个模块抽取后剩余的序列,认为是残差部分。

在Fusion层,使用1维卷积对各个模块的信息做融合。
在这里插入图片描述
而对于残差项、短期项和序列相关性项,它们的变化波动很大,不像前文中长周期模块和季节性模块这么稳定容易预测。文中采用的方法是,学习一个DNN网络,对历史一个窗口内相应模块的表示向量、scale、location等信息进行映射,预测未来时刻的相应信息

4. 实验

本文在多个数据集上,对比了各类多元时间序列预测模型的效果,包括单元序列模型、时空预测模型等。从效果上来看,本文提出的方法效果提升程度非常明显,基本在5%以上。
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值