【论文阅读】2022 N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting

N-HiTS是一种改进的N-BEATS模型,针对长时间序列预测的波动性和计算复杂度问题。它引入了多频率数据采样和分层次插值技术,通过MaxPool进行下采样和上采样来优化预测性能。实验表明,N-HiTS在6个数据集上实现了状态-of-the-art的结果,同时提高了计算效率。

在这里插入图片描述
论文地址:https://arxiv.org/pdf/2201.12886.pdf
论文代码:https://github.com/Nixtla/neuralforecast

1. 简介

本篇论文是N-Beats模型的改进,不了解N-Beats模型的可以先看【论文阅读】N-BEATS

长时间序列预测有两个常见的难点,一是预测结果的波动性大,二是计算复杂度高。本篇论文在N-BEATS模型的基础上,提出了一种新的模型N-HiTS,通过引入Hierarchical Interpolation和multi-rate data sampling技术来解决上述两个问题。

1.1 N-HiTS和N-BEATS对比

图1展示了N-HiTS和N-BEATS模型的对比:
(a)随着预测长度(Horizon)的增加,N-BEATS的速度变慢、参数量变多,N-HiTs则缓解了这两个问题;
(b)随着预测长度(Horizon)的增加,N-BEATS的误差变大,N-HiTs误差基本无变化。
(c)展示了论文中核心思想,即分不同频率采样预测后插值的思想,用来缓解文章开头提到的两个问题。
在这里插入图片描述

1.2 核心贡献
  1. Multi-Rate Data Sampling 多频率数据采样
    每个block时序数据输入MLP之前先进行下采样,这样做的好处是,1 是缩短了时序长度,从而更容易进行长时序预测, 2是节省了存储量和计算复杂度
  2. Hierarchical Interpolation 分层次插值
    和下采样是正好对应的,在预测结果上又做了个上采样,从而和输出长度匹配
  3. N-HiTS architecture
    提出了一种新的模型架构
  4. State-of-the-art results
    在6种数据集上取得了SOTA效果

2. 模型架构

N-HiTS模型是N-BEATS模型的扩展,提升了模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值