【论文阅读】2022 N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting

在这里插入图片描述
论文地址:https://arxiv.org/pdf/2201.12886.pdf
论文代码:https://github.com/Nixtla/neuralforecast

1. 简介

本篇论文是N-Beats模型的改进,不了解N-Beats模型的可以先看【论文阅读】N-BEATS

长时间序列预测有两个常见的难点,一是预测结果的波动性大,二是计算复杂度高。本篇论文在N-BEATS模型的基础上,提出了一种新的模型N-HiTS,通过引入Hierarchical Interpolation和multi-rate data sampling技术来解决上述两个问题。

1.1 N-HiTS和N-BEATS对比

图1展示了N-HiTS和N-BEATS模型的对比:
(a)随着预测长度(Horizon)的增加,N-BEATS的速度变慢、参数量变多,N-HiTs则缓解了这两个问题;
(b)随着预测长度(Horizon)的增加,N-BEATS的误差变大,N-HiTs误差基本无变化。
(c)展示了论文中核心思想,即分不同频率采样预测后插值的思想,用来缓解文章开头提到的两个问题。
在这里插入图片描述

1.2 核心贡献
  1. Multi-Rate Data Sampling 多频率数据采样
    每个block时序数据输入MLP之前先进行下采样,这样做的好处是,1 是缩短了时序长度,从而更容易进行长时序预测, 2是节省了存储量和计算复杂度
  2. Hierarchical Interpolation 分层次插值
    和下采样是正好对应的,在预测结果上又做了个上采样,从而和输出长度匹配
  3. N-HiTS architecture
    提出了一种新的模型架构
  4. State-of-the-art results
    在6种数据集上取得了SOTA效果

2. 模型架构

N-HiTS模型是N-BEATS模型的扩展,提升了模型预测准确度和计算效率,特别在预测长时序(long-horizon forecasting)时效果提升更明显。

N-HiTS模型的整体架构和N-BEATS一致,均由多个stack堆叠组成,每个stack包含多个block。区别在于N-HiTS种每个block加了一个MaxPool层进行pooling操作,实现下采样,并对block输出进行插值处理,使输出数量达到预测Horizon数量。
在这里插入图片描述

在这里插入图片描述

2.1 Multi-Rate Data Sampling

如图2最右侧,每个Block的输入先经过一个MaxPool层,进行一次时域上的最大池化,将时间序列采样为多种粒度的序列。池化核的大小为 k l k_l kl,当 k l k_l kl越大,得到的序列更加低频/尺度较大;反之,则是更加高频/尺度较小,文中将这种采样方式称为multi-rate signal sampling。

不同的block使用不同的采样率,从而得到不同尺度的序列。这使得不同的block专注于解决特定频率和尺度的序列。

这样做的好处是,下采样之后,序列长度变短了,所以复杂度变低了,效率变高了。此外,也减少了模型参数量,避免了过拟合的风险,又保持了原始的感受野。

在这里插入图片描述

2.2 Hierarchical Interpolation

由于每一个block输入序列进行下采样后,对应的输出会相应的少于目标Horizon,因此在预测结果上又做了个上采样。

下采样的核 k l k_l kl越大,输入序列越短、尺度越大,预测出来的未来序列也就越短,要想得到和期望Horizon一样的长度,就做一个上采样,论文使用插值的方式(比如线性插值,二次插值),通过插值,使最终的输出个数达到期望Horizon数量。 k l k_l kl越小,序列越长、尺度越小,预测出来的未来序列就越长,就可以少插值一些。

模型每个stack负责不同尺度的预测,最后把不同尺度的预测序列插值到相同个数(也就是期望预测Horizon的大小),然后相加得到最终的输出。论文提出不同stack的采样核大小使用指数减小的方式来确定。

3. 实验

表1展示了在6个数据集上的实验效果,可以看出N-HiTS模型超过或达到了SOTA效果。
在这里插入图片描述

下图展示了不同模型训练速度和内存占用情况,N-HiTS都更有优势。
在这里插入图片描述
图5展示了消融实验结果,验证了多频率采样和分层插值的有效性
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值